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We model stochastic systems through Markov chains and specify and evaluate their
properties using probabilistic temporal logics and automata. In general, logics offer a
clearer syntax and automata provide better performance in terms of computabillity.
Therefore, it is important to define classes of logics and automata that have the same
expressive power and can be used interchangeably. Here, we focus
on two such formalisms known as pP-calculus

and p-automata.

Background

The pP-calculus [1] is a probabilistic femporal
logic. Formulas are built up from the
combination of:

- Atomic propositions

- Boolean connectives V, A

* Next operator Ogp

- Probabilistic quantification [¢];

* Fixpoints uX. @, vX. @
Using the fixpoint operators this logic can express
finite and infinite iterations of properties:

p, 7p

Least fixpoint n
Greatest fixpoint v

Finitely many iterations
Infinitely many iterations

Formulas ¢ contained inside a probabilistic
quantification are associated with a probability
value in [0,1]. The operator [-], checks whether
the value of the formula meets the bound J (of
the form > x or > x), and gets the value 1 or 0
accordingly. Therefore, top-level formulas are
qualitative: either true or false.

When a pP-calculus formula is true on a Markov
chain, we say that the Markov chain satisfies the
formula.
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Fig. 1. Markov chain.

[Oplso05 The probability of reaching p in one step is >0.5
(OO plsos The probability of reaching p in two steps is > 0.5
[V Opls0.5 The probability of p either now or in one step is >0.5

Fig. 2. pP-Calculus formulas true on the Markov chain of Fig. 1.
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Fig. 3. A graphrepresenting a p-automaton with:
alphabet { p,s }, states { q1, g2, q3, acc, rej },
transitions=edges, initial condition [ g1 ]5¢ 5.
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For every uP-calculus formula we can construct a
p-automaton that accepts exactly those Markov
chains that satisfy the formula [3].

The components of the automaton resulting from
the conversion are:

1. States originate from sub-formulas of the
form: propositions, negated propositions,
next, and quantified next; plus accepting
and rejecting states.

. Alphabet is the powerset of propositions
appearing in the formula.

. Transitions preserve the Boolean
connectives (v, A) and unfold the next
operators into their nested sub-formulas.

. Initial condition derives from the main
formula without fixpoints.

. Acceptance reflects the type of fixpoints
that enclose the sub-formula/state (4 <
odd, v & even) and their potential
nesting. Accepting and rejecting states
are assigned numbers 0 and 1,
respectively.
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“Fventually reach a p within single steps
whose probability is > 0.57

Fig. 4. pP-Calculus formula that either reads
a p or performs a step and starts again.
Since u allows finitely many repetitions,
a p must be reached eventually.

Fig. 5. p-automaton that either reads a p or
checks again. Since the topmost states
can be visited only finitely many times,
a p must be read eventually.
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A Markov chain is a probabilistic transition system
defined by the four components:

1) Set of Locations;
3) Probability function;

2) Initial location;
4) Labelling function.

The probability of moving from one location to each
of its successors is a number in [0,1]. The sum of
probabilities over all successors must be equal to 1.

A p-automaton [2] is an automaton that reads a
Markov chain as input and decides whether to
accept it or not. It is characterised by five
components:

1. States are the elementary blocks and, to
handle probabilities, may be enclosed in a
probabilistic quantification [-];.

. Alphabet contains symbols that are read by the
automaton, triggering a specific transition.

. Transitions allow the automaton fo move from
one state to a Boolean (and/or) combination
of them, depending on the symbol read.

. Initial condition is a state, or a combination
thereof, from which the automaton begins its
computation.

. Acceptance assigns a number to each state.
Only states that are marked by an even
number can be visited infinitely often.

For every p-automaton we can construct a ur-
calculus formula satisfied in exactly those Markov
chains accepted by the automaton [3].

The translation exploits the parallel between
components of the automaton and elements of
uP-calculus formulas:

* Propositions are taken from the alphabet.

« Boolean connectives match the and/or
combinations of states defined by the
fransitions and initial condition.

Next reflects the automaton's transitions.

Probabilistic quantification is placed
corresponding to bounded states of the
automaton.

Fixpoints are decided by looking at those
states that are visited indefinitely and their
acceptance number.
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We have summarised the analogies that allow
the tfranslation from pP-calculus to p-automata
and backwards. The mutual correspondence
of the two languages implies their equivalence
in expressive power; thus, lifting the well-known
connection between logics and automata
theory to a probabilistic scenario.
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