

We model stochastic systems through **Markov chains** and specify and evaluate their properties using probabilistic temporal logics and automata. In general, **logics** offer a clearer syntax and **automata** provide better performance in terms of computability. Therefore, it is important to define classes of logics and automata that have the **same expressive power** and can be used interchangeably. Here, we focus on two such formalisms known as  **$\mu^p$ -calculus** and **p-automata**.

## Background

### $\mu^p$ -Calculus

The  $\mu^p$ -calculus [1] is a probabilistic temporal logic. Formulas are built up from the combination of:

|                                       |                                  |
|---------------------------------------|----------------------------------|
| • <b>Atomic propositions</b>          | $p, \neg p$                      |
| • <b>Boolean connectives</b>          | $\vee, \wedge$                   |
| • <b>Next operator</b>                | $O\varphi$                       |
| • <b>Probabilistic quantification</b> | $[\varphi]$                      |
| • <b>Fixpoints</b>                    | $\mu X. \varphi, \nu X. \varphi$ |

Using the fixpoint operators this logic can express **finite** and **infinite** iterations of properties:

|                          |       |                            |
|--------------------------|-------|----------------------------|
| <b>Least fixpoint</b>    | $\mu$ | Finitely many iterations   |
| <b>Greatest fixpoint</b> | $\nu$ | Infinitely many iterations |

Formulas  $\varphi$  contained inside a probabilistic quantification are associated with a probability value in  $[0,1]$ . The operator  $[\cdot]$  checks whether the value of the formula meets the **bound J** (of the form  $\geq x$  or  $> x$ ), and gets the value 1 or 0 accordingly. Therefore, top-level formulas are qualitative: either true or false.

When a  $\mu^p$ -calculus formula is true on a Markov chain, we say that the **Markov chain satisfies the formula**.

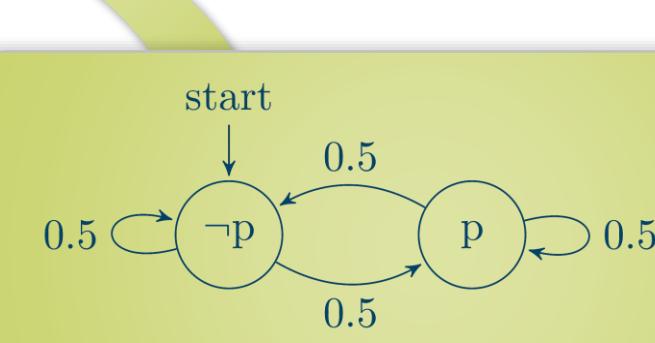
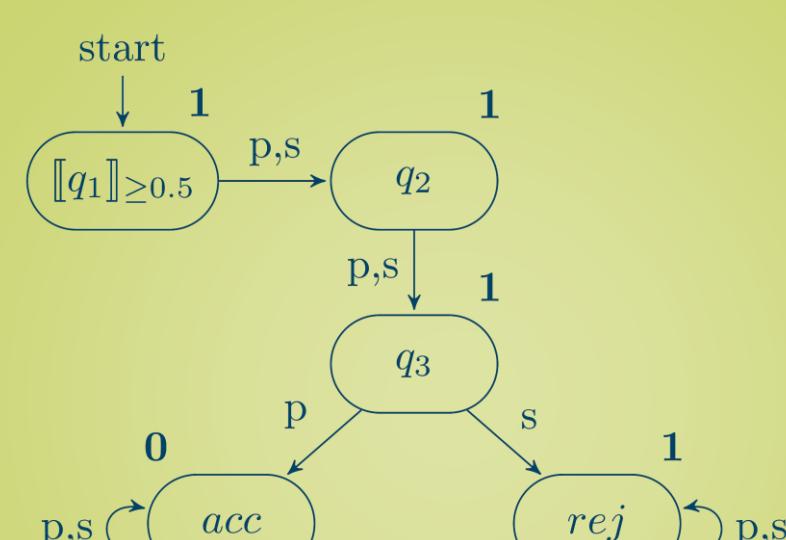


Fig. 1. Markov chain.

$[\Box p]_{\geq 0.5}$  The probability of reaching  $p$  in one step is  $\geq 0.5$   
 $[\Box \Box p]_{\geq 0.5}$  The probability of reaching  $p$  in two steps is  $\geq 0.5$   
 $[p \vee \Box p]_{\geq 0.5}$  The probability of  $p$  either now or in one step is  $\geq 0.5$

 Fig. 2.  $\mu^p$ -Calculus formulas true on the Markov chain of Fig. 1.

 Fig. 3. A graph representing a p-automaton with: alphabet {p,s}, states {q1, q2, q3, acc, rej}, transitions=edges, initial condition  $[\Box q_1]_{\geq 0.5}$ .

### Markov Chains

A Markov chain is a probabilistic transition system defined by the four components:

- 1) Set of **Locations**;
- 2) **Initial location**;
- 3) **Probability function**;
- 4) **Labelling function**.

The probability of moving from one location to each of its successors is a number in  $[0,1]$ . The sum of probabilities over all successors must be equal to 1.

### p-Automata

A p-automaton [2] is an automaton that reads a Markov chain as **input** and decides whether to **accept** it or not. It is characterised by five components:

1. **States** are the elementary blocks and, to handle probabilities, may be enclosed in a probabilistic quantification  $[\cdot]$ .
2. **Alphabet** contains symbols that are read by the automaton, triggering a specific transition.
3. **Transitions** allow the automaton to move from one state to a Boolean (and/or) combination of them, depending on the symbol read.
4. **Initial condition** is a state, or a combination thereof, from which the automaton begins its computation.
5. **Acceptance** assigns a number to each state. Only states that are marked by an even number can be visited infinitely often.

## Equivalence

### $\mu^p$ -Calculus $\rightarrow$ p-Automata

For every  $\mu^p$ -calculus formula we can construct a p-automaton that accepts exactly those Markov chains that satisfy the formula [3].

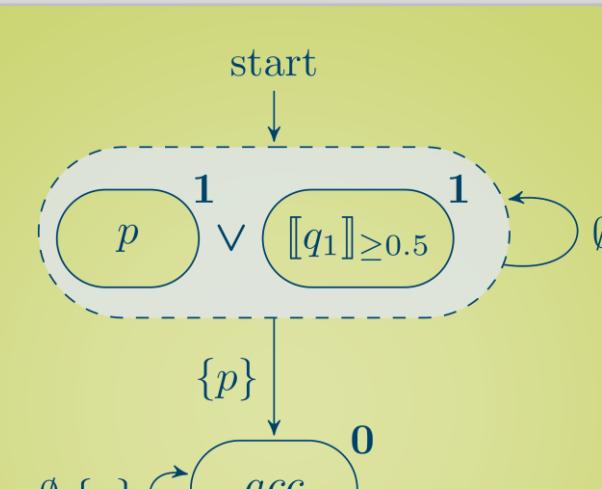
The components of the automaton resulting from the conversion are:

1. **States** originate from sub-formulas of the form: propositions, negated propositions, next, and quantified next; plus accepting and rejecting states.
2. **Alphabet** is the powerset of propositions appearing in the formula.
3. **Transitions** preserve the Boolean connectives ( $\vee, \wedge$ ) and unfold the next operators into their nested sub-formulas.
4. **Initial condition** derives from the main formula without fixpoints.
5. **Acceptance** reflects the type of fixpoints that enclose the sub-formula/state ( $\mu \leftrightarrow$  odd,  $\nu \leftrightarrow$  even) and their potential nesting. Accepting and rejecting states are assigned numbers 0 and 1, respectively.

 $\mu X.(p \vee [\Box X]_{\geq 0.5})$ 

“Eventually reach a  $p$  within single steps whose probability is  $\geq 0.5$ ”

Fig. 4.  $\mu^p$ -Calculus formula that either reads a  $p$  or performs a step and starts again. Since  $\mu$  allows finitely many repetitions, a  $p$  must be reached eventually.


 Fig. 5. p-automaton that either reads a  $p$  or checks again. Since the topmost states can be visited only finitely many times, a  $p$  must be read eventually.

### p-Automata $\rightarrow$ $\mu^p$ -Calculus

For every p-automaton we can construct a  $\mu^p$ -calculus formula satisfied in exactly those Markov chains accepted by the automaton [3].

The translation exploits the parallel between components of the automaton and elements of  $\mu^p$ -calculus formulas:

- **Propositions** are taken from the alphabet.
- **Boolean connectives** match the and/or combinations of states defined by the transitions and initial condition.
- **Next** reflects the automaton's transitions.
- **Probabilistic quantification** is placed corresponding to bounded states of the automaton.
- **Fixpoints** are decided by looking at those states that are visited indefinitely and their acceptance number.

We have summarised the analogies that allow the **translation** from  $\mu^p$ -calculus to p-automata and backwards. The mutual correspondence of the two languages implies their **equivalence** in expressive power; thus, lifting the well-known connection between logics and automata theory to a **probabilistic** scenario.

## References

- [1] Castro P., Kilmurray C., and Piterman N., Tractable Probabilistic Temporal Logics, 2015
- [2] Chatterjee K. and Piterman N., Obligation Blackwell Games and p-Automata, 2017
- [3] Cauli C. and Piterman N., Equivalence of  $\mu^p$ -Calculus and p-Automata, 2017

