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ABSTRACT
An important characteristic of the modal µ-calculus is its strong
connection with parity alternating tree automata. Here, we show

that the probabilistic µ-calculus, µp -calculus, and p-automata (par-

ity alternating Markov chain automata) have an equally strong

connection. Namely, for every µp -calculus formula we can con-

struct a p-automaton that accepts exactly those Markov chains

that satisfy the formula. For every p-automaton we can construct a

µp -calculus formula satisfied in exactly those Markov chains that

are accepted by the automaton. The translation in one direction

relies on a normal form of the calculus and in the other direction

on the usage of vectorial µp -calculus.
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1 INTRODUCTION
The verification of probabilistic systems is an increasingly impor-

tant area that has led to the development of new formalisms and

tools for the evaluation of quantitative properties over stochastic

models. The automata-theoretic approach to verification aims to

reduce questions about specifications to questions about automata,

defining a connection between logics and automata theory.

We focus on µp -calculus and p-automata. The former has been

introduced in [1] as a probabilistic extension of Kozen’s modal µ-
calculus. The latter [3] are probabilistic alternating parity automata

that read Markov chains as input. Acceptance of a Markov chain

by a p-automaton is decided through an obligation game, that is, a
turn-based stochastic parity game with obligations. We show that

µp -calculus and p-automata have the same expressive power.

2 BACKGROUND
Markov Chains. A Markov chain M = (S, sin ,L, P) over the set

AP of atomic propositions is a probabilistic transition system. S is

the set of locations; sin ∈ S is the initial location; L is a labelling

function L : S → 2
AP

; and P is a stochastic matrix P : S×S → [0, 1].

µp -Calculus. The µp -calculus allows the specification of proper-

ties bounded by a probability J (of the form {≥, >} × [0, 1]). This is

done through the distinction between qualitative (Φ) and quantita-

tive (Ψ) formulas, evaluated to values in the sets {0, 1} and [0, 1],

respectively. A µp -calculus sentence is qualitative and might con-

tain quantitative sub-formulas within the probabilistic operator

[·]J . The syntax of µ
p
-calculus is specified as follows:

Φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | [Ψ]J | µX .φ | νX .φ

Ψ ::= Φ | X | ψ1 ∧ψ2 | ψ1 ∨ψ2 | ⃝ψ | µX .ψ | νX .ψ

The semantics of a µp -calculus sentence φ is given with respect to a

Markov chainM and an interpretation ρ that associates a function

S → [0, 1] with each variable X appearing in φ. Therefore, it is a
mapping of type ⟦φ⟧ρM → (S → [0, 1]). A Markov chainM satisfies

φ, denotedM |= φ, if and only if the semantics evaluation of φ over

the initial location sin equals 1. The semantics of the calculus can

also be defined in terms of obligation games [3].

p-Automata. We define the set ⟦Q⟧> as the set of states ⟦q⟧J
that are bounded by a probability J ; and denote by B+(X ) the set

of positive boolean formulas over elements x in the set X , that
is, formulas built up from elements x combined with true , f alse ,
disjunctions, and conjunctions.

A p-automaton A over the set AP of atomic propositions is the

tuple A = (2AP ,Q,φin ,δ ,Ω), where 2AP is the alphabet; Q is the

set of states; φin ∈ B+(⟦Q⟧>) is the initial condition; δ : Q × Σ →

B+(Q ∪ ⟦Q⟧>) is the transition function; and Ω : Q → [0 . . .k]
is the parity acceptance condition. Acceptance of a Markov chain

is decided through an obligation game; the set of Markov chains

accepted by a p-automatonA is the language ofA, denoted by L(A).

3 EQUIVALENCE
The translation from µp -calculus to p-automata relies on the for-

mulas satisfying some syntactic requirements, defined as well-
formedness. The conversion in the opposite direction exploits the

vectorial syntax of the calculus. The proofs of both theorems use

the game semantics of µp -calculus and p-automata to show that

the proposed translations are correct.

Theorem 3.1 ([2]). Let φ be a well-formed µp -calculus formula
and Aφ the automaton resulting from its translation. Then, φ and Aφ
are equivalent: the set of Markov chains that satisfy the formula φ
corresponds to the language L(Aφ ) recognised by the p-automaton
Aφ . That is,M |=φ iffM ∈L(Aφ ).

Theorem 3.2 ([2]). Let A be a p-automaton over the set AP of
atomic propositions and ®φA the vectorial µp -calculus formula result-
ing from its conversion. Then, A and ®φA are equivalent: the set of
Markov chains that constitute the language L(A) recognised by the
p-automaton A coincides with the set of Markov chains that satisfy
the vectorial formula ®φA. That is,M ∈L(A) iffM |= ®φA.
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