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ABSTRACT

An important characteristic of the modal p-calculus is its strong
connection with parity alternating tree automata. Here, we show
that the probabilistic y-calculus, p-calculus, and p-automata (par-
ity alternating Markov chain automata) have an equally strong
connection. Namely, for every pf-calculus formula we can con-
struct a p-automaton that accepts exactly those Markov chains
that satisfy the formula. For every p-automaton we can construct a
pP-calculus formula satisfied in exactly those Markov chains that
are accepted by the automaton. The translation in one direction
relies on a normal form of the calculus and in the other direction
on the usage of vectorial pP-calculus.

KEYWORDS

pi-Calculus, Games, Automata, Probabilistic Temporal Logics

1 INTRODUCTION

The verification of probabilistic systems is an increasingly impor-
tant area that has led to the development of new formalisms and
tools for the evaluation of quantitative properties over stochastic
models. The automata-theoretic approach to verification aims to
reduce questions about specifications to questions about automata,
defining a connection between logics and automata theory.

We focus on p-calculus and p-automata. The former has been
introduced in [1] as a probabilistic extension of Kozen’s modal y-
calculus. The latter [3] are probabilistic alternating parity automata
that read Markov chains as input. Acceptance of a Markov chain
by a p-automaton is decided through an obligation game, that is, a
turn-based stochastic parity game with obligations. We show that
pP-calculus and p-automata have the same expressive power.

2 BACKGROUND

Markov Chains. A Markov chain M = (S, si", L, P) over the set
AP of atomic propositions is a probabilistic transition system. S is
the set of locations; si" € S is the initial location; L is a labelling
function L : S — 24F; and P is a stochastic matrix P : SxS — [0, 1].

uP -Calculus. The pP-calculus allows the specification of proper-
ties bounded by a probability J (of the form {>, >} X [0, 1]). This is
done through the distinction between qualitative (®) and quantita-
tive (¥) formulas, evaluated to values in the sets {0, 1} and [0, 1],
respectively. A pP-calculus sentence is qualitative and might con-
tain quantitative sub-formulas within the probabilistic operator
[-];. The syntax of p-calculus is specified as follows:

Qu=pl-plorAgzleVex|[¥]y | pXe|vX.e
Yu=@ | X [ Ay [ Vi | OV | Xy | vX.y
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The semantics of a pP-calculus sentence ¢ is given with respect to a
Markov chain M and an interpretation p that associates a function
S — [0, 1] with each variable X appearing in ¢. Therefore, it is a
mapping of type |[(p]]§4 — (S — [0, 1]). A Markov chain M satisfies
¢, denoted M |= ¢, if and only if the semantics evaluation of ¢ over
the initial location s*" equals 1. The semantics of the calculus can
also be defined in terms of obligation games [3].

p-Automata. We define the set [Q]]> as the set of states [q];
that are bounded by a probability J; and denote by B*(X) the set
of positive boolean formulas over elements x in the set X, that
is, formulas built up from elements x combined with true, false,
disjunctions, and conjunctions.

A p-automaton A over the set AP of atomic propositions is the
tuple A = (2AP, 0,¢'",8,Q), where 24P s the alphabet; Q is the
set of states; ¢! € B*([Q]>) is the initial condition; § : Q X 3 —
B*(Q U [Q]>) is the transition function; and Q : Q — [0...k]
is the parity acceptance condition. Acceptance of a Markov chain
is decided through an obligation game; the set of Markov chains
accepted by a p-automaton A is the language of A, denoted by L(A).

3 EQUIVALENCE

The translation from p-calculus to p-automata relies on the for-
mulas satisfying some syntactic requirements, defined as well-
formedness. The conversion in the opposite direction exploits the
vectorial syntax of the calculus. The proofs of both theorems use
the game semantics of p-calculus and p-automata to show that
the proposed translations are correct.

THEOREM 3.1 ([2]). Let ¢ be a well-formed pP -calculus formula
and A, the automaton resulting from its translation. Then, ¢ and A,
are equivalent: the set of Markov chains that satisfy the formula ¢
corresponds to the language L(A,) recognised by the p-automaton
Ap. That is, M|z @ iff Me L(A,).

THEOREM 3.2 ([2]). Let A be a p-automaton over the set AP of
atomic propositions and ¢ 4 the vectorial pP -calculus formula result-
ing from its conversion. Then, A and ¢4 are equivalent: the set of
Markov chains that constitute the language L(A) recognised by the
p-automaton A coincides with the set of Markov chains that satisfy
the vectorial formula ¢ 5. That is, M€ L(A) iff M|=§ 4.
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