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Abstract. An important characteristic of Kozen’s µ-calculus is its strong
connection with parity alternating tree automata. Here, we show that the
probabilistic µ-calculus µp-calculus and p-automata (parity alternating
Markov chain automata) have an equally strong connection. Namely,
for every µp-calculus formula we can construct a p-automaton that ac-
cepts exactly those Markov chains that satisfy the formula. For every
p-automaton we can construct a µp-calculus formula satisfied in exactly
those Markov chains that are accepted by the automaton. The transla-
tion in one direction relies on a normal form of the calculus and in the
other direction on the usage of vectorial µp-calculus. The proofs use the
game semantics of µp-calculus and automata to show that our transla-
tions are correct.

1 Introduction

The verification of probabilistic systems is an increasingly important area that
has led to the development of new formalisms and tools for the evaluation of
quantitative properties over stochastic models. These tools range from temporal
logics and quantitative variants of Kozen’s modal µ-calculus [15] to probabilistic
automata and games [2, 13, 17–19].

This work focuses on two such formalisms, µp-calculus and p-automata. The
µp-calculus has been introduced in [8] as a probabilistic extension of Kozen’s
modal µ-calculus. The so-called p-automata [9] are probabilistic alternating par-
ity automata that read Markov chains as input. Acceptance of a Markov chain by
a p-automaton is decided by an obligation game, that is, a turn-based stochastic
parity game with obligations.

The key contribution given by this paper is the proof of the equivalence
between µp-calculus and p-automata. We provide a framework to translate µp-
formulas into p-automata and, using the vectorial syntax, define the inverse
conversion from p-automata into µp-calculus. Thus, we show that the two for-
malisms have the same expressive power and that they enjoy a close relationship
similar to those of Kozen’s µ-calculus and alternating tree automata (see below).

Related Work. This study belongs to a general field of research that aims to
define a connection between logics and automata theory. An interesting sur-
vey conducted by Kupferman et al. in [16] provides insights into this relation-
ship by presenting translations from a number of temporal logics – linear-time,



branching-time, µ-calculus, and its alternation-free fragment – into different
classes of alternating tree automata.

Over the last three decades, several studies have focused on the definition
of an automata-theoretic approach to Kozen’s µ-calculus. In [10], Emerson and
Jutla proposed a framework to convert µ-calculus formulas into alternating tree
automata, then reduced to their non-deterministic counterpart. Their result com-
plements previous studies by Niwiński [20] that defined the inverse translation
from non-deterministic tree automata to µ-calculus, thus showing that Kozen’s
µ-calculus is equivalent to tree automata in expressive power. In [14], Janin and
Walukiewicz introduced µ-automata, alternating automata with a parity accep-
tance condition that easily translate to and from µ-calculus formulas in disjunc-
tive normal form. In a subsequent work, [21], Niwiński extends his previous result
to a broader scope establishing the equivalence between alternating automata
over arbitrary algebraic structures – thus including trees – and fixed point terms,
a general fixpoint formalism that finds a natural interpretation as a system of
equations. Wilke, in [23], addresses the interplay among µ-calculus, alternating
tree automata, and games. In particular, he gives a translation from logic to
automata and then defines the acceptance problem for automata by reduction
to the winner problem in parity games. A comprehensive outline of the rela-
tionship among logics, automata, and parity games is given in [12]. Overviews of
µ-calculus, including its mathematical foundation, axiomatic system, properties,
guarded form, vectorial syntax, game semantics, and equivalence with automata,
can be found in [1, 3–5].

Huth and Kwiatkowska suggested a quantitative µ-calculus to reason about
Markov chains [13]. This calculus was extended in [7] by adding a bounded
number of probabilistic quantifications and allowing to define PCTL*. The µp-
calculus allows to nest probabilistic quantifications inside fixpoint operators and,
thus, allows for unbounded probabilistic quantifications. It is a subset of the cal-
culus defined in [17, 19]. The µp-calculus expressive enough to include PCTL and
PCTL*, the complexity of its decision procedures is reduced, and the algorithms
involved wrap up standard algorithms for solution of (quantitative) two-player
stochastic parity games in extra layer rather than bespoke algorithms.

2 Background

2.1 Markov Chains

A Markov chainM over a set AP of atomic propositions is a probabilistic labelled
transition system defined by the tuple M = (S, sin, L, P ), where S is the set of
locations; sin ∈ S is the initial location; L is a labelling function, overloaded to
both denote L : S → 2AP and L : AP → 2S ; and P is the probability transition
function P : S × S → [0, 1]. For every location s we define the set succ(s) of its
successors as the set of locations s′ such that P (s, s′) > 0. Clearly, the sum of
the probabilities of moving from a location to all its successors must be equal to
1, that is

∑
s′∈succ(s) P (s, s′) = 1, and every location has at least one successor.
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2.2 Obligation Games

Obligation games [9] are two-player stochastic parity games with obligations that
are played on a graph amongst a probabilistic system and two players, called
Player 0 and Player 1.

Definition 1 (Obligation Game). An obligation game G is the tuple

G =
(
(V,E), (V0, V1, Vp),K, 〈α,O〉

)
,

where V is the set of configurations, partitioned in Player 0 (V0), Player 1 (V1),
and probabilistic configurations (Vp); E ⊆ V ×V is the set of edges; K : Vp×V →
[0, 1] is the probability function such that (v, v′) /∈ E implies K(v, v′) = 0 and
for every v ∈ Vp we have

∑
v′∈V K(v, v′) = 1; and the pair 〈α,O〉 defines the

goal: α : V → [0..k] is the parity condition, and O : V → ({>,≥}× [0, 1])∪ {⊥}
marks the obligations, with the symbol ⊥ denoting no obligation.

Obligations are statements applied to some configurations that impose con-
straints on the winning paths that depart from them. An obligation has the
form > x or ≥ x, where x ∈ [0, 1], so as to indicate that the measure of the
paths starting from that configuration must be greater than, or greater than or
equal to, a given value x. Fixing a pair of strategies – σ for Player 0 and π for
Player 1 – and a prefix of configurations w ∈ V +, the game is reduced to only
probabilistic vertices and, hence, can be seen as a Markov chain enriched with a
goal 〈α,O〉, that is, a winning condition and a set of obligations. We denote such
structure as Gw(σ,π). Value and winner of G are decided by analysing Gw(σ,π)

using the notion of choice set.

A choice set is the set of finite paths that extend the prefix w and end
in a configuration with an obligation that can be met. It must be extended
through infinite paths that either reach another obligation or never reach another
obligation and are winning. The measure of the choice set is the measure of these
infinite paths and determines the value of the game on every configuration for
each player, denoted as vali(v) for i ∈ {0, 1}. We refer the reader to [9] for further
details concerning the measure of choice sets and the value of obligation parity
Markov chains. We write the value of game G on configuration v as valG(v) and
we define it as the value for Player 0 on v.

Player 0 wins the game G from prefix w with a value of 1 if for every value
r < 1 there exists a strategy σ such that for all Player 1’s strategies π in the
corresponding Markov chain Gw(σ,π) it is possible to determine a choice set whose
measure is at least r.

2.3 The µp-Calculus

The µp-calculus [8] is an extension of Kozen’s µ-calculus [15] that allows one
to specify properties that are bounded by a specific probability. This is done
through the distinction between qualitative (Φ) and quantitative (Ψ) formulas
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that are evaluated to values in the sets {0, 1} and [0, 1], respectively. A µp-
calculus sentence is qualitative and might contain one or more quantitative sub-
formulas within a probabilistic quantification operator [·]J . The operator [·]J
checks whether the value of the enclosed formula satisfies the bound J and
gets the value 1 or 0 accordingly. The syntax of the µp-calculus is given by the
following BNF grammar.

J ::= {≥, >} × [0, 1]
Φ ::= p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | [Ψ ]J | µXi.ϕ | νXi.ϕ
Ψ ::= Φ | Xi | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ©ψ | µXi.ψ | νXi.ψ

Fixed point formulas are of the form σXi.ϕ, where σ ∈ {µ, ν} and Xi is a variable
in the set V = {X0, X1, ...}. Variable Xi is bound by the fixed point operator to
the formula ϕ, which we also denote by ϕ(Xi) or ϕXi .

Semantics. The semantics of a µp-calculus formula ϕ is given with respect to a
Markov chain M and an interpretation ρ : V → (S → [0, 1]). That is, ρ associates
a function from locations to values in the domain [0, 1] with each variable Xi

appearing in ϕ. Therefore, the semantics is a mapping of type S → [0, 1] denoted
by JϕKρM and defined as follows:

JpKρM = χL(p) J¬pKρM = 1− χL(p)
Jϕ1 ∧ ϕ2K

ρ
M = min{Jϕ1K

ρ
M , Jϕ2K

ρ
M} Jϕ1 ∨ ϕ2K

ρ
M = max{Jϕ1K

ρ
M , Jϕ2K

ρ
M}

JXKρM = ρ(X) J[ϕ]JKρM =

{
1 If JϕKρM (s)J

0 OtherwiseJ©ϕKρM = λs.
∑
s′ P (s, s′)JϕKρM (s′)

JµX.ϕKρM = lfp(λf.JϕKρ[f/X]
M ) JνX.ϕKρM = gfp(λf.JϕKρ[f/X]

M )

Where χL(p) is the function that associates to a location s the value 0 if s /∈
L(p), or the value 1 if s ∈ L(p). The only elements of the calculus that are
evaluated exclusively to values in the set {0, 1} are p, ¬p, and [·]J . All the
other operators get real values in [0, 1], thus, can specify both quantitative and
qualitative properties depending on their nested sub-formulas.

Alternation Depth. The alternation depth of a formula ϕ, denoted by ad(ϕ), is
the maximum number of fixed point operators that occur nested and alternated
[11, 8]. A formula, or sub-formula, with no fixpoints has an alternation depth of 0.
A formula with a single fixed point operator has alternation depth 1. In addition
to the alternation depth, with every µp-calculus sub-formula ψ of ϕ is associated
a colour c(ψ). If ψ is a greatest fixed point then c(ψ) = 2

(
ad(ϕ) − ad(ψ)

)
; if ψ

is a least fixed point then c(ψ) = 2
(
ad(ϕ)− ad(ψ)

)
+ 1; and in every other case

c(ψ) = 2ad(ϕ)− 1.

Game Semantics. Given a µp-calculus formula ϕ and a Markov chain M , we
construct an obligation game GM,ϕ and we refer to such game as semantics
game. Game GM,ϕ is the tuple

(
(V,E), (V0, V1, Vp),K, 〈α,O

〉
), where:
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– V = S × sub(ϕ)
– V0 = {(s, ϕ1 ∨ ϕ2) | ϕ1 ∨ ϕ2 ∈ sub(ϕ)}
– V1 = {(s, ϕ1 ∧ ϕ2) | ϕ1 ∧ ϕ2 ∈ sub(ϕ)}
– Vp = V \ (V0 ∪ V1)
– E = {

(
(s, p), (s, p)

)
,
(
(s,¬p), (s,¬p)

)
} ∪ {

(
(s,X), (s, σX.ϕ(X))

)
} ∪

{
(
(s, ϕ1∨ϕ2), (s, ϕi)

)
| i ∈ {1, 2}}∪ {

(
(s, ϕ1∧ϕ2), (s, ϕi)

)
| i ∈ {1, 2}} ∪

{
(
(s,©ϕ), (s′, ϕ)

)
| s′ ∈ succ(s)} ∪ {

(
(s, [ϕ]J), (s, ϕ)

)
} ∪

{
(
(s, σX.ϕ(X)), (s, ϕ(X))

)
| σ ∈ {µ, ν}}

– K((s,©ψ), (s′, ψ)) = P (s, s′)

– α(s, ψ) =


0 if ψ = p, p ∈ L(s) or ψ = ¬p, p /∈ L(s)

1 if ψ = p, p /∈ L(s) or ψ = ¬p, p ∈ L(s)

c(ψ) otherwise
– O(s, [ψ]J) = J, O(v) = ⊥ for all other v ∈ V

Lemma 1. [8] For every Markov chain M , every location s, and every formula
ϕ we have JϕKρM (s) = val0(s, ϕ), where val0(s, ϕ) is the value of configuration
(s, ϕ) in game GM,ϕ.

For a qualitative µp-calculus formula ϕ we say that M satisfies ϕ, denoted
M, sin |= ϕ orM |= ϕ, iff JϕKρM (sin) = 1. That is,M |= ϕ iff valGM,ϕ

(sin, ϕ) = 1.

2.4 p-Automata

A p-automaton A is an alternating parity automaton that reads Markov chains as
input [9]. From a state q, the p-automaton reads a location s of a Markov chainM
and, according to the labelling L(s), performs a transition. Since Markov chains
have probabilities and the paths starting from a location s are characterised by
a measure, the p-automaton A might need to mark the states by a bound J .
The bound J is an element of the set ({≥, >} × [0, 1]) and, analogously to the
obligations over configurations of games, imposes a constraint over the measure
of the accepted paths starting in s.

For the set of states Q, we denote by JQK> the set of states q ∈ Q that are
marked by a bound J defined as {JqKJ | q∈Q, J ∈ ({≥, >} × [0, 1])}. Moreover,
we denote by B+(X) the set of positive boolean formulas over elements x in the
set X, given by the following grammar:

θ ::= x | true | false | θ1 ∧ θ2 | θ1 ∨ θ2
Given a formula θ ∈ B+(X) its closure cl(θ) is the set of all sub-formulas of θ
defined according to the grammar above. For a set Θ of formulas, the closure is
computed as cl(Θ) =

⋃
θ∈Θ cl(θ).

Definition 2 (p-Automata). A p-automaton A over the set AP of atomic
propositions is defined by the tuple:

A = (Σ,Q,ϕin, δ, Ω)

where Σ = 2AP is a finite input alphabet, Q is a possibly infinite set of states,
ϕin ∈ B+(JQK>) is the initial condition, δ : Q × Σ → B+(Q ∪ JQK>) is the
transition function, and Ω : Q→ [0 . . . k] is the parity acceptance condition.
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Acceptance Game. The set of Markov chains accepted by a p-automaton A
is the language of A, denoted by L(A). Acceptance of a Markov chain M by A
is decided through the obligation game GM,A = (V,E, (V0, V1, Vp),K,G), where:

– V = S × cl(δ(Q,Σ))
– V0 = {(s, θ1 ∨ θ2) | s ∈ S and θ1 ∨ θ2 ∈ cl(δ(Q,Σ))}
– V1 = {(s, θ1 ∧ θ2) | s ∈ S and θ1 ∧ θ2 ∈ cl(δ(Q,Σ))}
– Vp = V \ (V0 ∪ V1)
– E = {

(
(s, θ1 ∧ θ2), (s, θi)

)
| i ∈ {1, 2}} ∪

{
(
(s, θ1 ∨ θ2), (s, θi)

)
| i ∈ {1, 2}} ∪

{
(
(s, q), (s′, δ(q, L(s)))

)
| s′ ∈ succ(s)} ∪

{
(
(s, JqKJ), (s′, δ(q, L(s)))

)
| s′ ∈ succ(s)}

– K
(
(s, q), (s′, δ(q, L(s)))

)
= K

(
(s, JqKJ), (s′, δ(q, L(s)))

)
= P (s, s′)

– G = 〈α,O〉, where α(s, q) = α(s, JqKJ) = Ω(q), and O(s, JqKJ) = J .

The Markov chain M is accepted if the configuration (sin, ϕin) has value 1 in
GM,A. That is, M ∈ L(A) iff valGM,A

(sin, ϕin) = 1.

3 Vectorial µp-Calculus

We introduce the vectorial form as an alternative syntax for formulas in µp-
calculus. This form exposes the distinction between the fixpoint operators, which
appear as a prefix of the formula, and the modal formulas that they bind, al-
lowing one to focus on the modal properties rather than on an intricate nesting
of fixed-point terms. Through this syntax, the alternation depth of a sentence
is easier to identify, as the number of pairwise distinct fixpoint operators within
the prefix of the formula, and the most complex properties can be expressed in
a succinct way.

Let Fi be the set of functions (S → [0, 1])i from locations to values in the
unit interval, and ϕi be a modal µp-formula over the product lattice (F1× . . .×
Fn)m with range Fi, i.e. ϕi takes m vectors of n variables 〈X1

1 , . . . , X
1
n, . . . , X

m
1 ,

. . . , Xm
n 〉 and evaluates to a single function in Fi. If we consider the vector ϕ of

all modal terms 〈ϕ1, . . . , ϕn〉, each of which has range Fi, then, ϕ can be seen as a
mapping of type ϕ : (F1×. . .×Fn)m → F1×. . .×Fn, whose monotonicity derives
from the monotonicity of each single component and for which, by the Knaster-
Tarski theorem, least and greatest fixpoints are always defined. For m = 1, we
denote as µX.ϕ, resp. νX.ϕ, the least, resp. greatest, fixpoint of the mapping
ϕ, as a compact notation for:

σ

X1

...
Xn

 .

 ϕ1(X1, . . . , Xn)
...

ϕn(X1, . . . , Xn)

 =

f1...
fn

 .

Vectorial µp-calculus has the same expressive power as scalar µp-calculus. By
the application of the Bekič principle [1], whose effect is to push the fixpoint
operators inwards, every vectorial formula σX.ϕ can be reduced to a vector f
of scalar formulas 〈f1, . . . , fn〉.
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Semantics. Given a Markov chain M and a valuation ρ : (V1 × . . . × Vn)m →
(F1×. . .×Fn)m that associates a vector of functions with a vector of variables, the
semantics of ϕ is defined as JϕKρM = Jϕ1K

ρ
M×. . .×JϕnK

ρ
M ; that is, the semantics

of a vector of µp-formulas is the vector of the semantics of each component.
Accordingly, the semantics of σX.ϕ is the vector of semantics:

JσX.ϕKρM = JσX1.ϕKρM × . . .× JσXn.ϕKρM .

We use the projection operator on vectors ↓i to select the i-th component:
JσX.ϕ ↓iKρM = JσXi.ϕKρM = fi. The meaning of choosing a component is to
define an entry point to the computation performed by the vectorial formula [6].

Game Semantics. The semantics of a vectorial µp-calculus sentence σ1X1 . . .
σmXm.ϕ of depth m and height n for a Markov chain M is given by the obli-
gation game GM,ϕ defined by the tuple (V,E, (V0, V1, Vp),K, 〈α,O〉). The set of
configurations of the game is the set of pairs of a location from the Markov chain
and a subformula in

⋃
i≤n sub(ϕi) and, since ϕ is a vector of modal formulas, do

not contain pairs whose second element is a fixpoint term. As a consequence of
the absence of such configurations, vertices of the form (s,Xj

i ) link directly to
(s, ϕi) and carry the relevant priority j, which is the depth of the fixpoint that
the variable Xj

i binds in the vectorial formula. The remaining components are
defined exactly as in the semantics game for the scalar µp-calculus.

The value of the game GM,ϕ on the initial location sin of a Markov chain
M is the vector of values: valGM,ϕ

= valGM,ϕ
(sin, ϕ1)× . . .× valGM,ϕ

(sin, ϕn),
where the value of the i-th component is valGM,ϕ

(sin, ϕi).

Lemma 2. For every Markov chain M , every location s, every µp-calculus vec-
torial sentence σ1X1 . . . σmXm.ϕ of height n, and index i ≤ n we have

Jσ1X1 . . . σmXm.ϕ ↓iKρM (s) = valGM,ϕ
(s, ϕi).

Proof. The proof is conducted as that of Theorem 6 in [8] with the exception
that configurations (s, σX.ϕ(X)) do not appear in the game and those of the
form (s,Xi) link directly to (s, ϕi). ut

4 From µp-Calculus to p-Automata

We show that every qualitative µp-calculus formula can be translated into an
equivalent p-automaton. The translation relies on the formulas satisfying some
syntactic requirements.

Well-Formedness. The set of well-formed µp-calculus formulas is semantically
equivalent to the standard form of the calculus; however, it poses some con-
straints on the syntax allowing for the conversion into p-automata. We require
that the variables be bound exactly once and that well-formed formulas be
guarded ; that is, all the occurrences of a variable must be in the scope of a

7



next modality, which is itself in the scope of a fixpoint operator. To this end,
formulas can be re-written in guarded form, as explained in [16, 5], by the iter-
ated replacement of every open occurrence of a variable X by false in least fixed
point formulas and by true in greatest fixed point formulas. Also, we consider
the probabilistic quantification operator over a bound J that is restricted to the
set ({≥, >} × [0, 1]) \ {≥ 0, > 1}; this restriction does not affect the expressive
power of the language since properties of the form [·]≥0 and [·]>1 correspond to
true and false statements. Moreover, we are interested in formulas where all the
instances of the probabilistic quantification operator [·]J are directly applied to
a next ©. This requirement is necessary because the statements enclosed in a
probabilistic operator will translate into states of the corresponding automaton
that performs a transition moving to read the next locations of the model. One
can achieve this form by transforming the formulas according to the equivalences
stated in the lemma below.

Lemma 3. The following µp-calculus formulas are semantically equivalent.

[p]J ≡ p
[¬p]J ≡ ¬p

[ϕ1 ∧ ϕ2]J ≡ [ϕ1]J ∧ [ϕ2]J
[ϕ1 ∨ ϕ2]J ≡ [ϕ1]J ∨ [ϕ2]J

[σX.ϕ(X)]J ≡
[
ϕ
(
σX.ϕ(X)

)]
J

Proof. The proof arises from the semantics of the µp-calculus and the fixed point
axioms. ut

Translation. Let ϕ be a qualitative well-formed µp-calculus formula over the set
AP of atomic propositions. The p-automaton Aϕ is the tuple (2AP , Q, δ, ϕin, Ω),
where 2AP is the alphabet, Q is the set of states {⊥,>}∪{p,¬p, (©ψ, c) | for all
p,¬p, ©ψ ∈ sub(ϕ) and c ∈ [0 . . . 2ad(ϕ) − 1]}, the transition function δ (and
the auxiliary function δε) is defined by the rules in Figure 1.

The initial condition ϕin is the expression δε
(
ϕ, c(ϕ)

)
; the priority Ω is

Ω(⊥) = 1, Ω(>) = 0, Ω(©ψ, c) = c, and maximum colour otherwise.

Transitions of Aϕ always consume the input label a of a location in a Markov
chain and move forward to its successors. The computation starts from the states
within the initial condition ϕin. From a state p or ¬p, the p-automaton reads the
current label a and moves to one of the special states > or ⊥ defining an infinite
computation that is accepting or rejecting, respectively. When in a state (©ψ, c)
reading a label a, the p-automaton moves to a new set of states determined by
unfolding the formula ψ through the epsilon transition function δε. The outcome
of δε, as well as of δ, is a positive boolean formula over states q and bounded
states JqKJ that represents the requirement from the system. States within such
formula are evaluated over the successor locations in M . Acceptance of a Markov
chain M by the p-automaton Aϕ is decided by the acceptance game GM,Aϕ : if
the value in such game of the initial configuration is 1 M is accepted, otherwise,
it is rejected.
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δ(p, a) =

{
> if p ∈ a
⊥ if p /∈ a

δ(¬p, a) =

{
> if p /∈ a
⊥ if p ∈ a

δ(>, a) = >
δ(⊥, a) = ⊥

δ
(
(©ψ, c), a

)
= δε(ψ, c)

δε(p, c) = p

δε(¬p, c) = ¬p
δε(ψ1 ∨ ψ2, c) = δε(ψ1, c) ∨ δε(ψ2, c)

δε(ψ1 ∧ ψ2, c) = δε(ψ1, c) ∧ δε(ψ2, c)

δε
(
σX.ϕ(X), c

)
= δε

(
ϕ(X), c

)
δε
(
X, c

)
= δε

(
ϕ(X), c(X)

)
δε(©ψ, c) = (©ψ, c)

δε([©ψ]J , c) = J(©ψ, c)KJ

Fig. 1. Transition of Aϕ.

The following theorem states the correctness of the translation from µp-calculus
into p-automata.

Theorem 1. Let ϕ be a well-formed µp-calculus formula and Aϕ the automaton
resulting from its translation. Then, ϕ and Aϕ are equivalent: the set of Markov
chains that satisfy the formula ϕ corresponds to the language L(Aϕ) recognised
by the p-automaton Aϕ. That is, M |=ϕ iff M ∈L(Aϕ).

The proof is conducted by showing that for all Markov chains M the accep-
tance game GM,Aϕ

simulates the semantics game GM,ϕ. In particular, there is a
mapping between prefixes of paths in the two games, within which probabilities,
obligations, and infinite winning sets are preserved. Therefore, the acceptance
game has the same value as that of the semantics game, leading the p-automaton
Aϕ to accept all the Markov chains that satisfy the formula ϕ.

5 From p-Automata to µp-Calculus

We show that every p-automaton can be translated into an equivalent µp-calculus
formula. Transitions of p-automata define an infinite computation tree whose
nodes are states marked by priorities. The sequence of such priorities within
the paths of the tree determines whether the computation is accepted or not:
infinitely many visits to a minimal even priority mean acceptance, whereas pass-
ing infinitely often through a minimal odd priority causes rejection. All these
elements have their analogue in µp-calculus: transitions and modal formulas,
applying a transition from a state and passing through variables, odd/even pri-
orities and least/greatest fixpoints, and levels of priorities and nesting of fix-
point formulas. We exploit this analogy in the conversion from p-automata to
µp-calculus, using the syntax that most emphasises the role of each component,
the vectorial form.

Translation. Let A be a p-automaton over the set AP of atomic propositions
defined by the tuple (2AP , Q, δ, ϕin, Ω), with n the number of states of the au-
tomaton. Let i1, . . . , im be the ordered chain of increasing priorities in the set
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⋃
q∈QΩ(q). For each index j ≤ m we introduce a vector Xij of n+ 1 fresh vari-

ables. The first variable of each j-th vector is a dummy variable that refers to
the initial condition of the automaton, and we indicate it as Xin

ij
. The remaining

n variables of each j-th vector bind the n formulas corresponding to the transi-
tions that the p-automaton A performs from each of its n states; we write such
variables as X1

ij
, . . . , Xn

ij
. Accounting for the initial condition of the automaton

as the first component of these vectors allows one to retrieve the semantics of
the resulting formula as the semantics of its first element. As a consequence, the
ordering of the other n components is not relevant.

In order to turn states into variables we use a function t that takes a formula
in B+(Q ∪ JQK>) and returns a formula over variables and bounded variables:

t(θ1 ∨ θ2) = t(θ1) ∨ t(θ2)

t(θ1 ∧ θ2) = t(θ1) ∧ t(θ2)

t(JqKJ) = [Xq
Ω(q)]J

t(q) = Xq
Ω(q)

We employ this function in the definition of the vector ϕ of modal µp-formulas.
The first component of ϕ is t(ϕin), the other n components are denoted by ϕk

for k ≤ n and are specified by the following modal formula

ϕk =
∨

a∈2AP

© t
(
δ
(
qk, a

))
∧
∧
p∈a

p ∧
∧
p/∈a

¬p

 .

Finally, the vectorial µp-calculus formula ϕA is defined as the prefix chain of
ordered fixpoints and vectors enclosing ϕ, where σij = µ if ij is odd or σij = ν
if ij is even:

ϕA = σi1


Xin
i1

X1
i1
...
Xn
i1

 . . . σim


Xin
im

X1
im
...

Xn
im

 .


t
(
ϕin
)

ϕ1

...
ϕn

 .

The semantics of the vectorial formula ϕA for a Markov chain M and a valuation
ρ is the semantics of its first component over the initial location sin of M and
it is equivalent to the value of the configuration

(
sin, t

(
ϕin
))

in the semantics

game GM,ϕA
. That is, JϕA ↓1KρM (sin) = valGM,ϕA

(
sin, t

(
ϕin
))

.

It is worth noticing that only a maximum of n out of m× (n+ 1) variables are
bound within the formula ϕA. Therefore, ϕA can be seen as a system of n + 1
equations in n variables that can be reduced by substitution and Gauss elimina-
tion techniques to a single scalar µp-calculus sentence (see [22]). In particular,
it is sufficient to derive a solution, or expression, for each of the n variables and
by syntactical substitution embed such expressions in t(ϕin). However, we are
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interested in giving a characterization in terms of semantics game GM,ϕA
, in

which the effect of the syntactical substitution of variables is handled by the
edges connecting configurations (s,Xk) to (s, ϕk).

Theorem 2. Let A be a p-automaton over the set AP of atomic propositions
and ϕA the vectorial µp-calculus formula resulting from its conversion. Then,
A and ϕA are equivalent: the set of Markov chains that constitute the language
L(A) recognised by the p-automaton A coincides with the set of Markov chains
that satisfy the vectorial formula ϕA. That is, M ∈L(A) iff M |=ϕA.

Similarly to the case of the inverse translation, the proof shows that the semantics
game GM,ϕA

for the vectorial formula ϕA simulates the acceptance game GM,A

for the original p-automaton A. As a result, the two games have the same value
and, therefore, the Markov chains that satisfy the formula ϕA are exactly those
that are accepted by A.

6 Conclusion

The aim of this paper was to investigate the connection between µp-calculus and
p-automata and to assess their equivalence in expressive power. We introduced
the vectorial syntax and focused on its semantics in terms of obligation games.
We presented the notion of well-formed formulas as a necessary preliminary step
for their translation into p-automata. We showed that for every well-formed µp-
calculus sentence there exists an equivalent p-automaton that recognises exactly
all the Markov chains that model the formula. Conversely, we proved that for
every p-automaton there is an equivalent µp-formula that is satisfied by the same
Markov chains that form the language of the p-automaton.

Throughout this work, obligation games have played a key linking role in
defining the semantics of the structures resulting from the conversions and, there-
fore, proving the correctness of our claims.
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