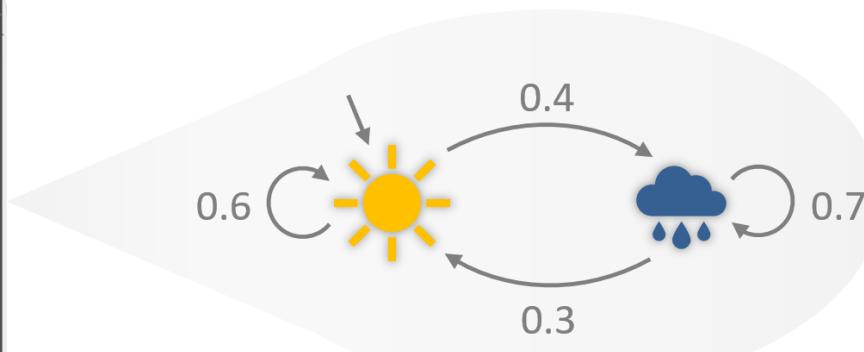
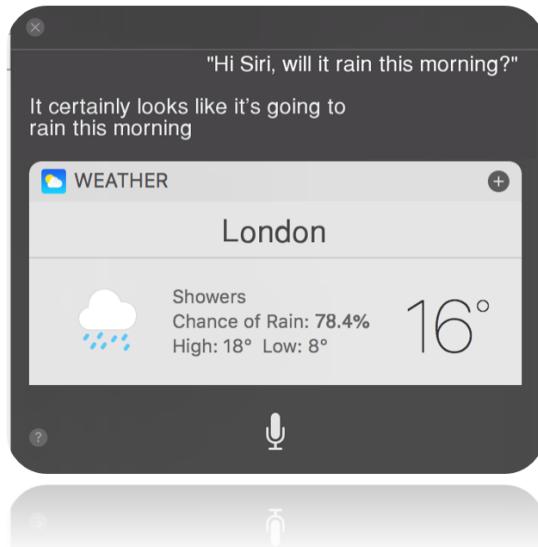


London Hopper Colloquium 2017
Research Spotlight Competition

Should I Take the Umbrella? Probabilistic Languages in Everyday Life

Claudia Cauli
PhD 1st Year

University of Leicester
LE1 7RH, Leicester, UK



joint work with Dr Nir Piterman

cc488@le.ac.uk
<http://claudiacauli.com>

Motivation

The quest for Formal Methods for Probabilistic Systems

- Probabilistic systems are modelled as *Markov Chains*.
- Their properties are expressed using *Probabilistic Languages*.
- Properties are then *checked* against the model.

Fig 1. A Markov chain that models hourly weather variations.

Related Problems

- To *specify properties* of probabilistic models → Probabilistic Languages?
- To *increase* the range of possible properties → Expressive Power?
- To *verify* such properties in an efficient way → Verification Approach?

We investigate the *Automata-Theoretic verification approach for Probabilistic Logics* and prove the equivalence of two formalisms: *p*-Automata and μ^p -Calculus.

Approach

The analysis and study of μ^p -Calculus and p-Automata

- Two classes of *probabilistic languages*: *Logics* & *Automata*.
- Automata-Theoretic approach to verification: *Logics* are handled as *Automata*.
- To be used interchangeably, logics and automata must be: *Equivalent*.

μ^p -Calculus

[1] Set of *formulas* built up from:

- $p, \neg p$ e.g. "rain", "not rain", "sun" etc.
- \wedge / \vee "and" / "or"
- \circ "in the next step"
- μ "finitely many times"
- $[\dots]_x$ "with probability x..."

$[\circlearrowleft \text{rain}]_{\geq 0.5}$

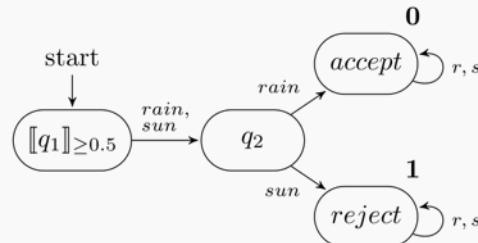

"With probability ≥ 0.5 , in the next hour rain"

Fig 2. An example of μ^p -Calculus formula. Is it true on the Markov chain of Fig.1?

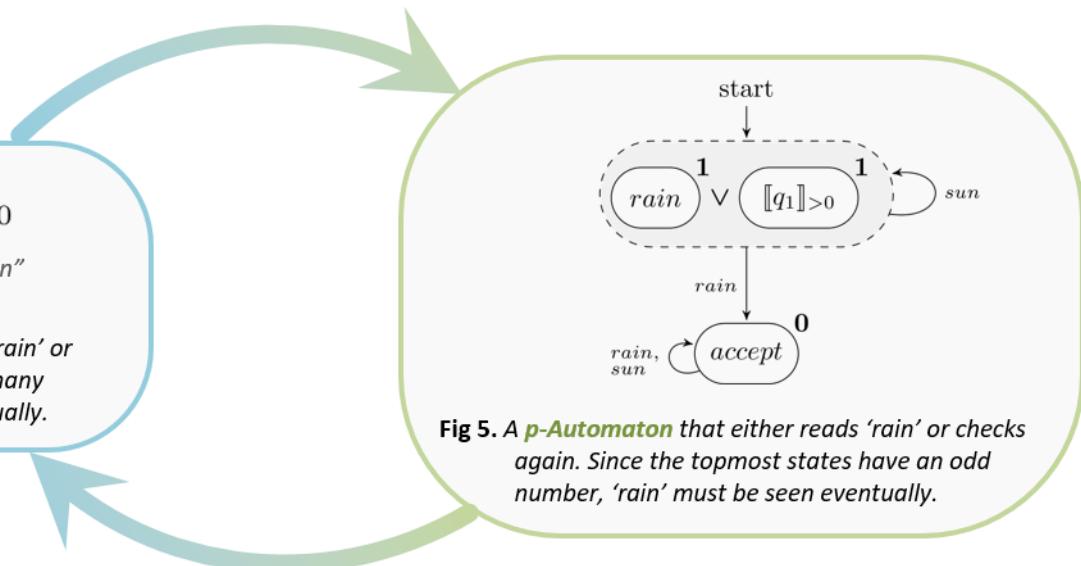
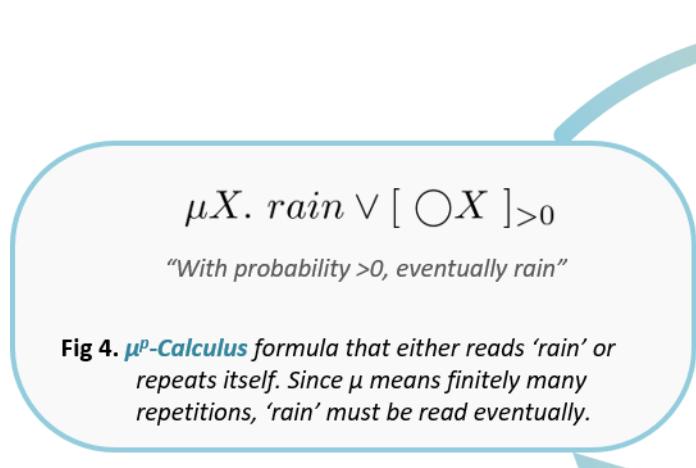
p-Automata

[2] *Graph-like structures* defined by:

- **Alphabet** Symbols in input
- **States** Vertices in the graph
- **Transitions** Edges linking vertices
- **Initial Condition** Combination of states
- **Acceptance** States w/ min even number

Fig 3. A graph representation of a p-Automaton.

[1] Castro P., Kilmurray C., and Piterman N., Tractable Probabilistic μ -Calculus that Expresses Probabilistic Temporal Logics. In 32nd Symposium on Theoretical Aspects of Computer Science (LIPIcs). Schloss Dagstuhl. 2015.



[2] Chatterjee K. and Piterman N., Obligation Blackwell Games and p-Automata. *Journal of Symbolic Logic*. 2017. To Appear

Results

μ^p -Calculus and p-Automata have the same Expressive Power

- A framework to convert from μ^p -Calculus to p-Automata and backwards.

Theorem 1. [3] For every μ^p -calculus formula we can construct a p-automaton that accepts exactly those Markov chains that satisfy the formula.

Theorem 2. [3] For every p-automaton we can construct a μ^p -calculus formula satisfied in exactly those Markov chains accepted by the automaton.

Future Work

- Different Models (e.g. Markov Processes, Interval Markov Chains, Constraint Markov Chains)
- More expressive language (Additional Operators: Concurrency, Probabilistic and/or)