

Closed- and Open-world Reasoning in DL-Lite for Cloud Infrastructure Security

Claudia Cauli¹, Magdalena Ortiz², Nir Piterman¹

¹University of Gothenburg

²TU Wien

Abstract

Infrastructure in the cloud is deployed through configuration files, which specify the resources to be created, their settings, and their connectivity. We aim to model infrastructure *before deployment* and reason about it so that potential vulnerabilities can be discovered and security best practices enforced.

Description logics are a good match for such modeling efforts and allow for a succinct and natural description of cloud infrastructure. Their open-world assumption allows capturing the distributed nature of the cloud, where a newly deployed infrastructure could connect to pre-existing resources not necessarily owned by the same user. However, parts of the infrastructure that are fully known need closed-world reasoning, calling for the usage of expressive formalisms, which increase the computational complexity of reasoning.

Here, we suggest an extension of DL-Lite^F that is tailored for capturing such cloud infrastructure. Our logic allows combining a core part that is completely defined (closed-world) and interacts with a partially known environment (open-world). We show that this extension preserves the first-order rewritability of DL-Lite^F for knowledge-base satisfiability and conjunctive query answering.

Security properties combine universal and existential reasoning about infrastructure. Thus, we also consider the problem of conjunctive query satisfiability and show that it can be solved in logarithmic space in data complexity.

1 Introduction

Complex cloud infrastructure is managed through code files that are compiled into atomic deployment instructions as part of a process known as Infrastructure as Code, IaC. As of 2021, known IaC frameworks include AWS CloudFormation, Terraform, Microsoft Azure Resource Manager, Google Cloud Deployment Manager, Chef, and Puppet, to name a few. Unfortunately, though, the same features that make IaC a convenient and powerful deployment tool—reusability, modularity, and shareability—also threaten the security of the cloud. IaC files are often recycled and combined, with little consideration of whether the original business context and security requirements apply to the new usage scenario. The security vulnerabilities arising from such a practice are subtle and widespread and need to be detected early, at the level of configuration files, *before* potentially-vulnerable infrastructure is deployed.

For such reasons, we research the application of knowledge representation formalisms to the modeling and reasoning of IaC files and work towards a comprehensive framework that fits into the scene set by existing tools (such as static analysis, linters, and rule-based recommendation systems) to secure cloud infrastructure pre-deployment. Description logics are a good match for such modeling efforts. They allow us to succinctly and unambiguously describe cloud infrastructures, and to leverage decidable reasoning services, often implemented in efficient off-the-shelf engines, when reasoning about their security.

By the distributed nature of the cloud, users can configure their infrastructure to connect to resources that are running elsewhere but not declared in their accounts. This happens frequently; for instance, when users have permission to perform operations on resources that they do not own, such as *write* or *read* permissions on a shared storage instance. As a consequence, IaC files may combine objects for which we have full knowledge, as *declared* in the configuration file, with objects for which we only have partial knowledge, as *referenced* by the configuration file. Although the structural specifications are known for both types of resources, the actual configuration of objects that are not declared in the IaC file is not known. *Is the shared storage encrypted? Is it accessible through a web server? Is it publicly readable or writable?* To answer these questions, we need to combine closed- and open-world reasoning in a way that enables verification and refutation of queries representing potential vulnerabilities. In previous work (Cauli et al. 2021a), we introduced the idea of using DL-based reasoning techniques for cloud infrastructure security, and used the expressive \mathcal{ALCOTQ} to model and reason about AWS CloudFormation, Amazon Web Services proprietary IaC framework. We simulated closed-world reasoning on selected nodes using the rich constructors available in \mathcal{ALCOTQ} , such as nominals, universal restrictions, and counting quantifiers. However, reasoning about security using this logic was not efficient, as basic services like satisfiability are NEXPTIME-complete (Tobies 1999; Baader et al. 2017) and the encoding of vulnerability queries turned out to be non-trivial for users that are not versed in description logic. This work highlighted the need for a formalism that scales to the size of cloud deployments, offers a more transparent and straightforward modeling language,

and does not require cumbersome specifications of security properties to catch the desired interpretation.

In this paper, we instead introduce a lightweight description logic that is tailored to model cloud infrastructure, at the same time ensuring tractable reasoning. We extend the popular DL-Lite^F with *specification* predicates whose interpretation is closed over a *core* part of the knowledge base (KB) but open elsewhere. We call such KBs *core-closed* knowledge bases. We show that this specific way of combining open and closed interpretations of the same predicates does not incur complexity penalties. Indeed, we show that satisfiability and query entailment over core-closed KBs are first-order reducible. To reason about *mitigations* and *vulnerabilities* to security threats, and in analogy to the terminology used for 3-valued reasoning in the model-checking community, we introduce **MUST** and **MAY** conjunctive queries and devise a simple logical language for the specification of such properties. Technically, properties that *must* hold are resolved via query entailment and properties that *may* hold are resolved via query satisfiability. We show that computing whether a tuple \vec{t} is a *sat-answer* of a given query can be solved in logarithmic space in the core portion of the KB.

The paper is structured as follows. In Sec. 2 we motivate the choices made in the contributions put forth by this paper. In Sec. 3 we review the background on DL-Lite^F and conjunctive queries. In Sec. 4 and 5 we introduce core-closed KBs and study KB satisfiability. In Sec. 6 and 7 we discuss conjunctive query entailment and satisfiability. In Sec. 8 we present our security queries. We then discuss related work (Sec. 9) and conclude in Sec. 10. Results and proofs that are omitted in this paper are found in the full version.

2 Motivation

In this section, we emphasize how the application of description logic to cloud security drives the two main contributions of this paper: *core*-closed KBs and **MUST/MAY** queries.

IaC Modeling In the Infrastructure as Code paradigm, the creation of resources is managed through *configuration files* that declare types and settings of the resource instances to be created, and are automatically compiled into atomic deployment instructions. Configuration files must validate against *specification files*, supplied by the cloud provider to describe how each type of resource can be declared and configured. In addition to the usual TBox and ABox, we introduce here two dedicated sets of assertions and axioms, denoted as \mathcal{M} and \mathcal{S} respectively, and use them to encode resources configuration and specification according to the IaC paradigm. The following is an example of how these could be used to model the structural specification of the resource type Bucket (\mathcal{S}) and the actual configuration of an instance called “*data*” (\mathcal{M}); and how these relate to the higher-level concept of Storage (\mathcal{T}), which could further have external entities (\mathcal{A}).

$$\mathcal{S} = \{ \exists \text{logsStore} \sqsubseteq \text{Bucket}, \exists \text{logsStore}^- \sqsubseteq \text{Bucket} \}$$

$$\mathcal{M} = \{ \text{Bucket}(\text{data}), \text{logsStore}(\text{data}, \text{logs}) \}$$

$$\mathcal{T} = \{ \text{Bucket} \sqsubseteq \text{Storage} \}$$

$$\mathcal{A} = \{ \text{Storage}(\text{externalStorage}) \}$$

Resources that are declared in an IaC configuration file are in the process of being deployed but do not yet exist. We informally call these the *template resources*. These form an infrastructure that can be connected to other external resources—not declared in the current deployment template but already running elsewhere. We call these the *boundary resources*, as they lie at the boundaries of the known *core* infrastructure. In the example above, *data* is a template node and *logs* is a boundary node. Boundary and external nodes are not part of our deployment. We may not own these cloud resources and have no knowledge of their configuration, but still, have permission to use them. However, we do know that *these must have some configuration that conforms to the specifications* too; therefore, we adopt an open-world assumption when it comes to boundary resources configuration w.r.t. the general system specifications. In contrast, we assume to have complete information about the configuration of *our* template resources w.r.t. the specifications and, thus, apply closed-world reasoning over these. In our example, where *logs* is a boundary node, although we do not own its configuration we certainly know that it *must* be a bucket and that it *may* have a *logsStore* property configured. Regarding the *data* object, which is a template node, we exclude the possibility of it being involved in additional relations (such as being the source or target of a *logsStore* property). In fact, had there been any further properties they would have been declared, and since this resource instance does not yet exist it cannot be pointed to by any node that is external to the current deployment. We call the pair $\langle \mathcal{S}, \mathcal{M} \rangle$ the *core* of our system, and refer to the richer KBs described above as *core*-closed KBs.

Querying for Vulnerabilities and Mitigations In security, we seek query languages to express that mitigations to security threats *must* be present (vs. *may* be absent) and vulnerabilities *may* be present (vs. *must* be absent). Such a requirement calls for efficient decision procedures for *query satisfiability*, in addition to query entailment. In our usage scenario, Boolean combinations of so-called **MUST/MAY** queries serve that purpose. We define **MUST/MAY** queries by nesting regular conjunctive queries within the scope of a **MUST** or **MAY** operator and resolve these via query entailment and query satisfiability, respectively.

This implementation allows us, for example, to query for potentially vulnerable instances such as “*Buckets that may store their own logs*”, encoded as

$$q_v[x] = \text{MAY logsStore}(x, x),$$

and to query for instances where mitigations to security threats are in place such as “*Buckets that must be server-side encrypted*”, expressed as

$$q_m[x] = \text{MUST} (\exists y, z. \text{encrypt}(x, y) \wedge \text{sseConfig}(y, z)).$$

In addition, through Boolean combinations of **MUST/MAY** queries we combine multiple properties into one single check; e.g., the following query witnessing the breach of the mitigation “*Buckets that may store logs must be encrypted*”:

$$q[x] = \text{MUST Bucket}(x) \wedge \text{MAY} (\exists y. \text{logsStore}(y, x)) \wedge \neg \text{MUST} (\exists y, z. \text{encrypt}(x, y) \wedge \text{sseConfig}(y, z)).$$

We note that the combination of *core* closed-world reasoning and MUST/MAY queries enables a very precise framework for the verification and refutation of security properties. Importantly, such precision allows us to reduce the rate of false-positive results that would clutter the quality of the findings presented to users and security engineers. For instance, the set of answers to the vulnerability query q_v over the sample model introduced in the previous paragraph would contain the *logs* node but would **not** contain the *data* node. The *data* bucket is already known to store its logs in a distinct bucket and is assumed to not have any more properties. The *logs* bucket, instead, belongs to the universe of external underspecified resources, for which it is not known whether it stores any logs (and where), and might actually store logs on itself—a fact that is worth spotlighting while assessing the security of IaC deployments. As can be seen in the extended version of our previous work (Cauli et al. 2021b), the examples discussed here are very close to real IaC deployments’ encoding and to the properties that are of interest for a security review.

3 Background

Here, we review DL-Lite $^{\mathcal{F}}$ and CQs, which provide the basis for the contributions made throughout the paper.

Let \mathbf{C} , \mathbf{R} , and \mathbf{I} be countably infinite sets of concept names, role names, and individual names. A DL-Lite $^{\mathcal{F}}$ concept B is built according to the syntax $B ::= \perp \mid A \mid \exists P$, where A is a concept name from the set \mathbf{C} and P is a role name R , or its inverse R^- , from the set \mathbf{R} . A TBox \mathcal{T} is a collection of positive inclusion axioms $B_1 \sqsubseteq B_2$, negative inclusion axioms $B_1 \sqsubseteq \neg B_2$, and functionality axioms $\text{Funct } P$. An ABox \mathcal{A} is a collection of concept and role assertions, both positive and negative, of the form $A(a)$, $\neg A(a)$, $R(a, b)$, and $\neg R(a, b)$, with a, b individual names from the set \mathbf{I} . A DL-Lite $^{\mathcal{F}}$ knowledge base (KB) \mathcal{K} is the pair $\langle \mathcal{T}, \mathcal{A} \rangle$. The semantics of a DL-Lite $^{\mathcal{F}}$ KB is given in terms of interpretations. An interpretation is the tuple $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\Delta^{\mathcal{I}}$ is a non-empty domain and $\cdot^{\mathcal{I}}$ is an interpretation function. The function $\cdot^{\mathcal{I}}$ assigns to every concept name A a set $A^{\mathcal{I}}$ subset of $\Delta^{\mathcal{I}}$, to every role name R a set $R^{\mathcal{I}}$ subset of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, and to every individual name a a domain element $a^{\mathcal{I}}$ from the set $\Delta^{\mathcal{I}}$. We adopt the unique name assumption (UNA), which requires that $a^{\mathcal{I}} \neq b^{\mathcal{I}}$ for individual names $a \neq b$. The interpretation function is extended to concepts and roles as follows.

$$\begin{aligned}\perp^{\mathcal{I}} &= \emptyset & (\neg B)^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus B^{\mathcal{I}} \\ (R^-)^{\mathcal{I}} &= \{(a, b) \mid (b, a) \in R^{\mathcal{I}}\} \\ (\exists P)^{\mathcal{I}} &= \{a \mid \exists b \in \Delta^{\mathcal{I}}. (a, b) \in P^{\mathcal{I}}\}\end{aligned}$$

An interpretation \mathcal{I} is a model of \mathcal{K} iff for all α in $\mathcal{T} \cup \mathcal{A}$ we have $\mathcal{I} \models \alpha$. The KB \mathcal{K} is said to be satisfiable when there exists at least one model. We write $\mathcal{K} \models \alpha$ whenever $\mathcal{I} \models \alpha$ for all models \mathcal{I} of \mathcal{K} .

A *conjunctive query* (CQ) is an existentially-quantified formula $q[\vec{x}]$ of the form $\exists \vec{y}. \text{conj}(\vec{x}, \vec{y})$, where *conj* is a conjunction of positive atoms and potentially inequalities. A *union of conjunctive queries* (UCQ) is a disjunction of CQs. The variables in \vec{x} are called *answer variables*, those in \vec{y}

are the existentially-quantified *query variables*. A tuple \vec{c} of constants appearing in \mathcal{K} is an answer to q if for all interpretations \mathcal{I} model of \mathcal{K} we have $\mathcal{I} \models q[\vec{c}]$. We call these tuples the *certain answers* of q over \mathcal{K} , denoted $\text{ans}(\mathcal{K}, q)$, and the problem of testing whether a tuple is a certain answer *query entailment*. A tuple \vec{c} of constants appearing in \mathcal{K} satisfies q if there exists an interpretation \mathcal{I} model of \mathcal{K} such that $\mathcal{I} \models q[\vec{c}]$. We call these tuples the *sat answers* of q over \mathcal{K} , denoted $\text{sat-ans}(\mathcal{K}, q)$, and the problem of testing whether a given tuple is a sat answer *query satisfiability*. In the rest of the paper, we consider inequalities only in the case of query satisfiability and not in the case of query entailment.

4 DL-Lite $^{\mathcal{F}}$ Core-closed KBs

In this section, we introduce the so-called “core-closed” knowledge bases, their models, and their unique features.

A DL-Lite $^{\mathcal{F}}$ core-closed KB is the tuple $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$, built from a standard KB $\langle \mathcal{T}, \mathcal{A} \rangle$ and a *core* $\langle \mathcal{S}, \mathcal{M} \rangle$. As described in section 2, the set \mathcal{S} contains DL-Lite $^{\mathcal{F}}$ axioms representing the core structural specifications and the set \mathcal{M} contains positive concept and role assertions representing the core configuration. Syntactically, \mathcal{M} is similar to an ABox \mathcal{A} but, differently from \mathcal{A} , it is assumed to be complete with respect to the specifications \mathcal{S} . As usual, $\langle \mathcal{T}, \mathcal{A} \rangle$ encodes the incomplete terminological and assertional knowledge that, in our setting, may refer to both the (closed) core and the surrounding (open) world.

The core-closed KB \mathcal{K} is defined over the sets of concept names \mathbf{C} , role names \mathbf{R} , and individual names \mathbf{I} . The set of concepts is partitioned into specification concepts $\mathbf{C}^{\mathcal{S}}$ and open concepts $\mathbf{C}^{\mathcal{K}}$. The set of roles is partitioned into specification roles $\mathbf{R}^{\mathcal{S}}$ and open roles $\mathbf{R}^{\mathcal{K}}$. The set of individuals is partitioned into the core individuals $\mathbf{I}^{\mathcal{M}}$ and the open individuals $\mathbf{I}^{\mathcal{K}}$. We call $\mathbf{C}^{\mathcal{S}}$ and $\mathbf{R}^{\mathcal{S}}$ *core-closed predicates* as their extension is closed over the core domain and open otherwise. In contrast, we call $\mathbf{C}^{\mathcal{K}}$ and $\mathbf{R}^{\mathcal{K}}$ *open predicates*. From now on, we denote symbols from the alphabet $\mathbf{X}^{\mathcal{X}}$ with the subscript \mathcal{X} , and symbols from the alphabet \mathbf{X} with no subscript. We now define which assertions are \mathcal{M} -assertions, i.e., fall into the scope of \mathcal{M} ; and which assertions are \mathcal{A} -assertions, i.e., fall into the scope of \mathcal{A} .

$$\begin{aligned}\mathcal{M} &\subseteq \{ A_{\mathcal{S}}(a_{\mathcal{M}}), R_{\mathcal{S}}(a_{\mathcal{M}}, a_{\mathcal{M}}), R_{\mathcal{S}}(a_{\mathcal{M}}, a_{\mathcal{K}}), R_{\mathcal{S}}(a_{\mathcal{K}}, a_{\mathcal{M}}) \} \\ \mathcal{A} &\subseteq \{ A_{\mathcal{K}}(a), R_{\mathcal{K}}(a, b), A_{\mathcal{S}}(a_{\mathcal{K}}), R_{\mathcal{S}}(a_{\mathcal{K}}, b_{\mathcal{K}}) \}\end{aligned}$$

We assume \mathcal{M} to be complete and consistent w.r.t. \mathcal{S} , and interpret as false all \mathcal{M} -assertions missing from \mathcal{M} . The usual open-world assumption is made over \mathcal{A} -assertions.

For convenience, we sometimes consider the set of open individuals $\mathbf{I}^{\mathcal{K}}$ as further partitioned into a set of *boundary* elements $\mathbf{I}^{\mathcal{B}}$, which appear in \mathcal{M} , and a set of *free* elements $\mathbf{I}^{\mathcal{K}'}$, which appear only in \mathcal{A} . With this notation in mind, we introduce the active domain of constants appearing in \mathcal{M} , denoted $\text{adom}(\mathcal{M})$ and defined as the set $\mathbf{I}^{\mathcal{M}} \uplus \mathbf{I}^{\mathcal{B}}$. We adopt the standard name assumption over individuals in $\text{adom}(\mathcal{M})$ and the unique name assumption over individuals in $\mathbf{I}^{\mathcal{K}'}$. In section 7, we will refer to this assumption as *core standard name assumption*. Such an assumption reflects the knowledge that we have of the system that we

aim at modeling. According to it, the nodes declared in the (known) *core* part of the infrastructure simply coincide with their interpretation domain; but the nodes belonging to the (unknown) surrounding part of the infrastructure need to be mapped to the domain. All these elements are distinct.

According to the DL-Lite^F syntax, axioms are built from concepts $B ::= B^S \mid B^K$, with $B^K ::= \perp \mid A_K \mid \exists P_K$ and $B^S ::= \perp \mid A_S \mid \exists P_S$, where P , called basic role, is either an atomic role R or its inverse R^- from the set \mathbf{R} . Axioms in S (S -axioms) refer only to core-closed predicates; whereas T -axioms can refer both to core-closed predicates (on the left-hand side of concept inclusions) and to open predicates:

$$\begin{aligned} S &\subseteq \{ B_1^S \sqsubseteq B_2^S, B_1^S \sqsubseteq \neg B_2^S, \text{Func}(P_S) \} \\ T &\subseteq \{ B_1 \sqsubseteq B_2^K, B_1 \sqsubseteq \neg B_2^K, \text{Func}(P_K) \} \end{aligned}$$

The semantics of a DL-Lite^F core-closed KB is given in terms of interpretations \mathcal{I} , consisting of a non-empty domain $\Delta^{\mathcal{I}}$ and an interpretation function $\cdot^{\mathcal{I}}$. The latter assigns to each concept A a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$, to each role R a subset $R^{\mathcal{I}}$ of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$, and to each individual a a node $a^{\mathcal{I}}$ in $\Delta^{\mathcal{I}}$. An interpretation \mathcal{I} is a model of an inclusion axiom $B_1 \sqsubseteq B_2$ if $B_1^{\mathcal{I}} \subseteq B_2^{\mathcal{I}}$. An interpretation \mathcal{I} is a model of a membership assertion $A(a)$, (resp. $R(a, b)$) if $a^{\mathcal{I}} \in A^{\mathcal{I}}$ (resp. $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in R^{\mathcal{I}}$). We say that \mathcal{I} models T , S , and A if it models all axioms or assertions contained therein. We say that \mathcal{I} models M , denoted $\mathcal{I} \models^{\text{CWA}} M$, when it models an M -assertion f if and only if $f \in M$. Finally, \mathcal{I} models K if it models T , S , A , and M . If K has at least one model, then K is satisfiable.

The notion of FOL-reducibility captures the property that we can reduce satisfiability and query answering over a core-closed KB to evaluating a first-order logic query over A and M considered as minimal models. In particular, we consider the following interpretations of A and M : the *database* interpretation of A , denoted $db(A)$, and the *labeled transition system* interpretation of M , denoted $lts(M)$.

Given an ABox A , with $adom(A)$ its active domain of constants, we denote by $db(A)$ the interpretation $(\Delta^{db(A)}, \cdot^{db(A)})$ that is defined as follows:

$$\begin{aligned} \Delta^{db(A)} &= adom(A) \\ a^{db(A)} &= a, \text{ for each constant } a \text{ appearing in } A \\ A^{db(A)} &= \{ a \mid A(a) \in A \} \text{ for each } A \in C \\ R^{db(A)} &= \{ (a, b) \mid R(a, b) \in A \} \text{ for each } R \in R. \end{aligned}$$

For an MBox M , we denote by $lts(M)$ the interpretation $(\Delta^{lts(M)}, \cdot^{lts(M)})$ that is defined similarly as above with one notable exception: the interpretation of concept and role names is computed only for those concepts and roles that fall within the scope of M , that is, core-closed predicates C^S and R^S . It is easy to see that $db(A) \models A$, and, precisely, it is the *minimal* model of A . Similarly, $lts(M) \models^{\text{CWA}} M$, and, in particular, it is the *unique* model of M .

We consider various reasoning problems over core-closed KBs and study their combined and data complexity (Vardi 1982). We measure data complexity in terms of the model M , which we expect to be much larger than A .

5 Core-closed KB Satisfiability

As per standard DL-Lite^F results, we now show that satisfiability of core-closed KBs (i) can be reduced to consistency of the functionality axioms and of the axioms in the negative closure of T and S , and (ii) it is FOL-reducible. Readers familiar with the work of (Calvanese et al. 2007b) will recognize the analogies between the two presentations.

As defined in the previous section, a DL-Lite^F core-closed KB $K = \langle T, A, S, M \rangle$ is satisfiable if and only if there exists at least one interpretation \mathcal{I} such that $\mathcal{I} \models T \cup A \cup S$ and $\mathcal{I} \models^{\text{CWA}} M$. Let ga be a function that takes as input a basic role P and two individuals a, b and returns a membership assertion in the following way: $ga(P, a, b) = R(a, b)$ if $P = R$, and $ga(P, a, b) = R(b, a)$ if $P = R^-$.

Canonical Interpretation The canonical interpretation of a core-closed KB K is constructed according to the notion of boundary chase, or *bchase*. The *bchase* is built by exploiting the *applicable positive inclusion axioms* in the sets T and S .

Definition 1 (Applicable Axioms). *Let X be a set of M -assertions, Y be a set of A -assertions, and PI_T and PI_S be the positive inclusion axioms in T and S , respectively. Then, an axiom $\alpha \in PI_T \cup PI_S$ is said to be applicable in Y to an assertion $f \in Y \cup X$ if:*

- c1** $\alpha = A \sqsubseteq A_K, f = A(a), \text{ and } A_K(a) \notin Y$
- c2** $\alpha = \exists P \sqsubseteq A_K, f = ga(P, a, b), \text{ and } A_K(a) \notin Y$
- c3** $\alpha = A \sqsubseteq \exists P_K, f = A(a), \text{ and there is no } b \text{ such that } ga(P_K, a, b) \in Y$
- c4** $\alpha = \exists P \sqsubseteq \exists P_K, f = ga(P, a, b), \text{ and there is no } c \text{ such that } ga(P_K, a, c) \in Y$
- c5** $\alpha = A_S \sqsubseteq A'_S, f_A = A_S(a_K), \text{ and } A'_S(a_K) \notin Y$
- c6** $\alpha = \exists P_S \sqsubseteq A_S, f = ga(P_S, a_K, b), \text{ and } A_S(a_K) \notin Y$
- c7** $\alpha = A_S \sqsubseteq \exists P_S, f_A = A_S(a_K), \text{ and there is no } a_M \text{ s.t. } ga(P_S, a_K, a_M) \in X \text{ and no } c_K \text{ s.t. } ga(P_S, a_K, c_K) \in Y$
- c8** $\alpha = \exists P'_S \sqsubseteq \exists P_S, f = ga(P'_S, a_K, b), \text{ and for no } a_M, ga(P_S, a_K, a_M) \in X \text{ and for no } c_K, ga(P_S, a_K, c_K) \in Y$

Starting with $\mathcal{Y}_0 = A$ and $X = M$ (that is, starting with the contents of A and M), axioms are incrementally *applied* to assertions. At each i -th step, an axiom α is applied to an assertion f in $\mathcal{Y}_j \cup X$ and a new membership assertion is added to \mathcal{Y}_{j+1} . Following such step, α is not applicable in \mathcal{Y}_{j+1} to the assertion f anymore. Depending on the order of application, syntactically different sets of assertions could be generated. To account for this, from now on we assume the existence of an infinite ordered set of fresh symbols \mathbf{I}^+ , from which we draw fresh individuals, and *apply* assertions following a preset order.

Definition 2 (Boundary Chase). *Let $K = \langle T, A, S, M \rangle$ be a DL-Lite^F core-closed KB, PI_T the positive inclusion axioms in T , PI_S the positive inclusion axioms in S , and \mathbf{I}^+ a set of fresh individuals. Then, the boundary chase of K , denoted $bchase(K)$, is defined as:*

$$bchase(K, X) = \bigcup_{j \in \mathbb{N}} \mathcal{Y}_j$$

where $X = M$, $\mathcal{Y}_0 = A$, and $\mathcal{Y}_{j+1} = \mathcal{Y}_j \cup \{f_{new}\}$, where f_{new} depends on the rule being applied:

let f be the first assertion s.t. there is α applicable in \mathcal{Y}_j to let α be the first applicable axiom
let a_{new} be the next available constant in the ordered set \mathbf{I}^+
switch $< f, \alpha >$
case c1: $f_{new} = \mathbf{A}_{\mathcal{K}}(a)$
case c2: $f_{new} = \mathbf{A}_{\mathcal{K}}(a)$
case c3: $f_{new} = \mathbf{ga}(\mathbf{P}_{\mathcal{K}}, a, a_{new})$
case c4: $f_{new} = \mathbf{ga}(\mathbf{P}_{\mathcal{K}}, a, a_{new})$
case c5: $f_{new} = \mathbf{A}'_{\mathcal{S}}(a_{\mathcal{K}})$
case c6: $f_{new} = \mathbf{A}_{\mathcal{S}}(a_{\mathcal{K}})$
case c7: $f_{new} = \mathbf{ga}(\mathbf{P}_{\mathcal{S}}, a_{\mathcal{K}}, a_{new})$
case c8: $f_{new} = \mathbf{ga}(\mathbf{P}_{\mathcal{S}}, a_{\mathcal{K}}, a_{new})$

As customary, we note that (i) negative inclusion and functionality axioms play no role in the construction of the bchase, and that (ii) this notion of bchase is *fair*, that is, all applicable axioms will *eventually* be applied, as formalized by the following statements. Let $bchase_i$ be the bchase built at the i -th rule application. Then, if there is an $i \in \mathbb{N}$ s.t. axiom α is applicable in $bchase_i(\mathcal{K}, \mathcal{X})$ to an assertion $f \in bchase_i(\mathcal{K}, \mathcal{X})$, then there is a $j > i$ s.t. $bchase_{j+1}(\mathcal{K}, \mathcal{X}) = bchase_j(\mathcal{K}, \mathcal{X}) \cup \{f'\}$, where f' is the result of applying α to f in $bchase_j(\mathcal{K}, \mathcal{X})$.

Moreover, as clear from definitions 1 and 2, we have that an axiom is applicable to an \mathcal{M} -assertion only when a fresh assertion about a “boundary” individual $a_{\mathcal{K}}$ can be added to the chase. However, only \mathcal{A} -assertions are included in the bchase itself, and the procedure of adding fresh assertions only generates \mathcal{A} -assertions and never generates \mathcal{M} -assertions. We formalize this in the following lemma.

Lemma 1. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite^F core-closed KB, let i be an index in \mathbb{N} , and let $bchase_i(\mathcal{K}, \mathcal{M})$ be \mathcal{K} ’s i -th boundary chase. Then, $bchase_i(\mathcal{K}, \mathcal{M})$ does not contain \mathcal{M} -assertions.

We are now ready to define the notion of *canonical interpretation* of a core-closed KB.

Definition 3 (Canonical Interpretation). *The canonical interpretation of a core-closed KB \mathcal{K} , denoted as $can(\mathcal{K})$, is the interpretation $can(\mathcal{K}) = (\Delta^{can(\mathcal{K})}, .^{can(\mathcal{K})})$ where:*

$$\begin{aligned} \Delta^{can(\mathcal{K})} &= \mathbf{I}^{\mathcal{M}} \uplus \mathbf{I}^{\mathcal{K}} \uplus \mathbf{I}^+ \\ a^{can(\mathcal{K})} &= a \quad \text{for } a \in \text{adom}(\mathcal{M}) \cup bchase(\mathcal{K}, \mathcal{M}) \\ \mathbf{A}_{\mathcal{K}}^{can(\mathcal{K})} &= \{a \mid \mathbf{A}_{\mathcal{K}}(a) \in bchase(\mathcal{K}, \mathcal{M})\} \\ \mathbf{R}_{\mathcal{K}}^{can(\mathcal{K})} &= \{(a, b) \mid \mathbf{R}_{\mathcal{K}}(a, b) \in bchase(\mathcal{K}, \mathcal{M})\} \\ \mathbf{A}_{\mathcal{S}}^{can(\mathcal{K})} &= \mathbf{A}_{\mathcal{S}}^{lts(\mathcal{M})} \cup \{a \mid \mathbf{A}_{\mathcal{S}}(a) \in bchase(\mathcal{K}, \mathcal{M})\} \\ \mathbf{R}_{\mathcal{S}}^{can(\mathcal{K})} &= \mathbf{R}_{\mathcal{S}}^{lts(\mathcal{M})} \cup \{(a, b) \mid \mathbf{R}_{\mathcal{S}}(a, b) \in bchase(\mathcal{K}, \mathcal{M})\} \end{aligned}$$

We refer to the canonical model built with the i -th bchase as $can_i(\mathcal{K}) = (\Delta^{can(\mathcal{K})}, .^{can_i(\mathcal{K})})$ and note that $\Delta^{lts(\mathcal{M})} \subseteq \Delta^{can(\mathcal{K})}$, $\Delta^{db(\mathcal{A})} \subseteq \Delta^{can(\mathcal{K})}$, and $.^{lts(\mathcal{M})} \cup .^{db(\mathcal{A})} = .^{can_0(\mathcal{K})}$.

Lemma 2. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite^F core-closed KB, and let $can(\mathcal{K})$ be its canonical interpretation. Then, $can(\mathcal{K})$ is a model of \mathcal{M} .

Proof. We show that $can(\mathcal{K})$ models an \mathcal{M} -assertion f iff if $f \in \mathcal{M}$. The ‘if’ direction follows from the fact that $can(\mathcal{K})$

contains $lts(\mathcal{M})$, which is a model of \mathcal{M} and contains all \mathcal{M} -assertions f such that $f \in \mathcal{M}$. The ‘only if’ direction follows from Lemma 1: in particular, $can(\mathcal{K})$ is the union of $lts(\mathcal{M})$ and $bchase(\mathcal{K}, \mathcal{M})$, and since $bchase$ does not contain \mathcal{M} -assertions, then all \mathcal{M} -assertions in $can(\mathcal{K})$ are inside $lts(\mathcal{M})$. Since $lts(\mathcal{M})$ models \mathcal{M} , then all \mathcal{M} -assertions f in $can(\mathcal{K})$ are also in \mathcal{M} . We conclude that $can(\mathcal{K}) \models_{CWA} \mathcal{M}$. \square

Lemma 3. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite^F core-closed KB, let $PI_{\mathcal{T}}$ be the positive inclusion axioms in \mathcal{T} , and let $PI_{\mathcal{S}}$ be the positive inclusion axioms in \mathcal{S} . Then, $can(\mathcal{K})$ is a model of $(PI_{\mathcal{T}}, \mathcal{A}, PI_{\mathcal{S}}, \mathcal{M})$.

As a consequence, every DL-Lite^F core-closed KB with only positive inclusion axioms in \mathcal{T} and \mathcal{S} (s.t. $PI_{\mathcal{T}} = \mathcal{T}$ and $PI_{\mathcal{S}} = \mathcal{S}$) is always satisfiable, since one can always build a $can(\mathcal{K})$ that is a model of \mathcal{K} . Regarding functionality assertions, the following lemma applies.

Lemma 4. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite^F core-closed KB, let $F_{\mathcal{T}}$ be the subset of functionality axioms in \mathcal{T} , and let $F_{\mathcal{S}}$ be the subset of functionality axioms in \mathcal{S} . Then $can(\mathcal{K})$ is a model of $(F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$ if and only if $db(\mathcal{A}) \cup lts(\mathcal{M})$ is a model of $(F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$.

NI-closure Let us now consider negative inclusion axioms. In particular, to establish a satisfaction relation between $db(\mathcal{A})$ and $lts(\mathcal{M})$, on one side, and the NIs in \mathcal{K} , on the other side, we need to consider the interaction between the positive and the negative inclusion axioms that are contained in \mathcal{K} . In the following, we materialize the interaction between the PIs and NIs contained in $\mathcal{T} \cup \mathcal{S}$ by computing their *negative inclusion closure*, $cln(\mathcal{T} \cup \mathcal{S})$. We then show that $can(\mathcal{K})$ is a model of such closure.

Definition 4. Let \mathcal{T} be a DL-Lite^F TBox, and let \mathcal{S} be a DL-Lite^F SBox. We call NI-closure of $\mathcal{T} \cup \mathcal{S}$ the set $cln(\mathcal{T} \cup \mathcal{S})$ of inclusion axioms defined inductively as follows:

1. All NIs in $\mathcal{T} \cup \mathcal{S}$ are in $cln(\mathcal{T} \cup \mathcal{S})$;
2. All Fs in $\mathcal{T} \cup \mathcal{S}$ are in $cln(\mathcal{T} \cup \mathcal{S})$;
3. If $B_1 \sqsubseteq B_2 \in (\mathcal{T} \cup \mathcal{S})$, and $B_2 \sqsubseteq \neg B_3$ (or $B_3 \sqsubseteq \neg B_2$) $\in cln(\mathcal{T} \cup \mathcal{S})$, then also $B_1 \sqsubseteq \neg B_3 \in cln(\mathcal{T} \cup \mathcal{S})$;
4. If either $\exists P \sqsubseteq \neg \exists P \in cln(\mathcal{T} \cup \mathcal{S})$ or $\exists P^- \sqsubseteq \neg \exists P^- \in cln(\mathcal{T} \cup \mathcal{S})$, then both are in $cln(\mathcal{T} \cup \mathcal{S})$.

This closure does not add negative inclusion axioms that were not implied already by $\mathcal{T} \cup \mathcal{S}$.

Lemma 5. Let $\mathcal{T} \cup \mathcal{S}$ be a set of DL-Lite^F inclusion axioms, and let α be either a functionality axiom or a negative inclusion axiom. Then, if $cln(\mathcal{T} \cup \mathcal{S}) \models \alpha$ then $\mathcal{T} \cup \mathcal{S} \models \alpha$.

We are now ready to show that, provided we have computed the closure $cln(\mathcal{T} \cup \mathcal{S})$, the analogous of Lemma 3 and Lemma 4 hold for NIs.

Lemma 6. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite^F core-closed KB. Then, $can(\mathcal{K})$ is a model of \mathcal{K} if and only if the union $db(\mathcal{A}) \cup lts(\mathcal{M})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} .

Corollary 1. Let $\mathcal{T} \cup \mathcal{S}$ be a set of DL-Lite^F inclusion axioms, and α a functionality or negative inclusion axiom. We have that, if $\mathcal{T} \cup \mathcal{S} \models \alpha$ then $cln(\mathcal{T} \cup \mathcal{S}) \models \alpha$.

FOL-reducibility

Lemma 7. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite $^{\mathcal{F}}$ core-closed KB. Then $\text{can}(\mathcal{K})$ is a model of \mathcal{K} if and only if \mathcal{K} is satisfiable.

Since $\text{can}(\mathcal{K})$ could be infinite, its construction is in general neither convenient nor possible. However, the results presented so far, especially Lemmas 6 and 7, allow us to conclude that in order to check satisfiability of a DL-Lite $^{\mathcal{F}}$ core-closed KB \mathcal{K} it is sufficient to compute $\text{cln}(\mathcal{T} \cup \mathcal{S})$ and to look at $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$.

Theorem 1. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite $^{\mathcal{F}}$ core-closed KB. Then \mathcal{K} is satisfiable if and only if $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$ is a model of $\text{cln}(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} .

Proof. \Rightarrow \mathcal{K} is satisfiable. From Lemma 7, it follows that $\text{can}(\mathcal{K})$ is a model of \mathcal{K} . From Lemma 6, it follows that $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$ is a model of $\text{cln}(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} .

\Leftarrow If $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$ is a model of $\text{cln}(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} , then, from Lemma 6, $\text{can}(\mathcal{K})$ is a model of \mathcal{K} , and, from Lemma 7, \mathcal{K} is satisfiable. \square

Verifying that $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$ models $\text{cln}(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} , can now be done by writing a Boolean FOL query over $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$ itself. We use the following translation function δ from axioms in $\text{cln}(\mathcal{T} \cup \mathcal{S})$ to FOL formulas:

$$\begin{aligned}\delta(\text{func } R) &= \exists x, y, z. R(x, y) \wedge R(x, z) \wedge y \neq z \\ \delta(\text{func } R^-) &= \exists x, y, z. R(y, x) \wedge R(z, x) \wedge y \neq z \\ \delta(B_1 \sqsubseteq \neg B_2) &= \exists x. \gamma_1(x) \wedge \gamma_2(x)\end{aligned}$$

where B_i is a DL-Lite $^{\mathcal{F}}$ complex concept, and in the last equation we have: $\gamma_i(x) = A_i(x)$ if $B_i = A_i$; $\gamma_i(x) = \exists y_i. R_i(x, y_i)$ if $B_i = \exists R_i$; and $\gamma_i(x) = \exists y_i. R_i(y_i, x)$ if $B_i = \exists R_i^-$. Intuitively, such formulas detect inconsistencies that would make $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$ not model the axioms in the NI-closure.

To summarize, to decide satisfiability of a DL-Lite $^{\mathcal{F}}$ core-closed KB \mathcal{K} we need to: (1) compute $\text{db}(\mathcal{A})$ and $\text{lts}(\mathcal{M})$; (2) compute $\text{cln}(\mathcal{T} \cup \mathcal{S})$; and (3) compute the Boolean FOL formula q_{unsat} as the union of all Boolean formulas returned by the application of δ to every axiom in $\text{cln}(\mathcal{T} \cup \mathcal{S})$. We show how this is done in Algorithm 1.

Algorithm 1: The algorithm Consistent

Inputs : $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$
Output: *true* if \mathcal{K} is satisfiable, *false* otherwise

```

1 def Consistent ( $\mathcal{K}$ ):
2    $q_{\text{unsat}} := \perp$ ;
3   foreach  $\alpha \in \text{cln}(\mathcal{T} \cup \mathcal{S})$  do
4      $q_{\text{unsat}} := q_{\text{unsat}} \vee \delta(\alpha)$ ;
5   if  $q_{\text{unsat}}^{\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})} = \emptyset$  then
6     return true;
7   return false;

```

Lemma 8. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite $^{\mathcal{F}}$ core-closed KB. Then, the algorithm Consistent(\mathcal{K}) terminates, and \mathcal{K} is satisfiable iff Consistent(\mathcal{K}) returns true.

Proof. Termination follows from the fact that $\text{cln}(\mathcal{T} \cup \mathcal{S})$ is a finite set. The query q_{unsat} verifies whether there is an axiom α in the NI-closure that is violated in $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$. The algorithm returns true only when such an axiom does not exist, therefore, $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$ is a model of all assertions in $\text{cln}(\mathcal{T} \cup \mathcal{S})$, and, by Theorem 1, \mathcal{K} is satisfiable. \square

As a consequence of Lemma 8, we get:

Corollary 2. Satisfiability of a DL-Lite $^{\mathcal{F}}$ core-closed KB is FOL reducible.

6 CQ Entailment

In this section, we discuss entailment of a conjunctive query q over a core-closed KB \mathcal{K} and computation of the certain answers $\text{ans}(q, \mathcal{K})$. Let us recall that, for the entailment problem, we are interested in queries that do not contain inequalities. By the construction of \mathcal{K} 's canonical model $\text{can}(\mathcal{K})$ presented in the previous section, it is easy to see that the preliminary properties that hold for DL-Lite $^{\mathcal{F}}$ KBs (Calvanese et al. 2007b) also hold for DL-Lite $^{\mathcal{F}}$ core-closed KBs. In particular, we have that (i) there exists an isomorphism from \mathcal{K} 's canonical model to every model of \mathcal{K} and (ii) the answers to a CQ over \mathcal{K} correspond to the answers to the query over $\text{can}(\mathcal{K})$. Based on these results, we solve entailment of a CQ q over a core-closed KB \mathcal{K} via query reformulation. The query is reformulated based on the PI axioms in $\mathcal{T} \cup \mathcal{S}$ and then evaluated over $\text{db}(\mathcal{A}) \cup \text{lts}(\mathcal{M})$. Classically, the algorithm PerfectRef takes in input a CQ q and returns a collection of fresh CQs that reformulate q by internalizing positive inclusion axioms and reducing atoms that can be unified (Calvanese et al. 2007b). We apply PerfectRef as is and, hence, omit its description from the presentation. We report the CAns procedure in algorithm 2 and state its correctness by the following theorem.

Theorem 2. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite $^{\mathcal{F}}$ core-closed KB, let q be a conjunctive query, and \vec{t} a tuple of constants in \mathcal{K} . Then $\vec{t} \in \text{ans}(q, \mathcal{K})$ iff $\vec{t} \in \text{CAns}(q, \mathcal{K})$.

As a result of the tight correspondence between the standard and the core-closed setting w.r.t. canonical model construction and query reformulation, we have that $\text{ans}(q, \mathcal{K}) = \text{CAns}(q, \mathcal{K})$ and that, hence, answering conjunctive queries in core-closed DL-Lite $^{\mathcal{F}}$ KBs is FOL-reducible. In addition, due to such correspondence, other properties of conjunctive query answering over DL-Lite $^{\mathcal{F}}$ hold as well, e.g., it is also the case that there is a \mathcal{K} with no finite interpretation that answers a CQ, just like usual DL-Lite $^{\mathcal{F}}$ KBs (Calvanese et al. 2007b).

Theorem 3. Query entailment in DL-Lite $^{\mathcal{F}}$ core-closed KBs is AC⁰ in data complexity and NP-complete in combined complexity.

Algorithm 2: The algorithm CAns

Inputs : CQ $q, \mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$
Output: $ans(q, \mathcal{K})$

```

1 def CAns ( $\mathcal{K}, q$ ):
2   if not Consistent( $\mathcal{K}$ ) then
3     return AllTup( $q, \mathcal{K}$ )
4   return PerfectRef( $q, \mathcal{T} \cup \mathcal{S}$ )db( $\mathcal{A}$ ) ∪ lts( $\mathcal{M}$ )
```

7 CQ Satisfiability

We now discuss satisfiability of a conjunctive query with inequalities q w.r.t a core-closed KB \mathcal{K} and computation of the sat answers $sat\text{-}ans(q, \mathcal{K})$. Let q be the conjunctive query $q[\vec{x}] = \exists \vec{y}. conj(\vec{x}, \vec{y})$ where \vec{x} is the set of q 's answer variables and \vec{y} are the existentially-quantified variables. We call a *CQ-assertion* a query q where the answer variables \vec{x} have been replaced by an assignment \vec{c} and define the problem of CQ-assertion satisfiability as follows.

Definition 5 (CQ-assertion Satisfiability). *An asserted conjunctive query with inequalities $q[\vec{c}] = \exists \vec{y}. conj(\vec{c}, \vec{y})$ is said to be satisfiable w.r.t. $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ iff there exists an interpretation \mathcal{I} model of \mathcal{K} such that \mathcal{I} satisfies $q[\vec{c}]$.*

To decide CQ-assertion satisfiability we require solving satisfiability of a core-closed KB without the unique name assumption, which we discuss in the following paragraph.

Core-Closed KB Satisfiability w/o UNA Let us drop the unique name assumption on pairs of individuals that are not covered by the *core standard name assumption* (cf. section 4). Intuitively, these include all pairs referring to individuals not in \mathcal{M} 's active domain plus all pairs where exclusively *one* element can be a boundary node from \mathbf{I}^B . The ABox \mathcal{A} can now contain inequality assertions $a_j \not\approx a_k$ where $a_j \in \mathbf{I}^K$ and $a_k \in \mathbf{I}^{K'}$. Pairs of individuals not falling in this set definition, that is, pairs s.t. $a_j \in \mathbf{I}^M$ or $a_j, a_k \in \mathbf{I}^B$, will still be assumed to be distinct by the *core SNA*. For instance, a boundary node a_j in \mathbf{I}^B could correspond to the same domain object as an external node a_k in $\mathbf{I}^{K'}$. We refer to this assumption as \mathcal{A} -noUNA.

Lemma 9. *Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite^F core-closed KB with inequalities in \mathcal{A} interpreted under \mathcal{A} -noUNA. Then, one can construct in polynomial time in \mathbf{I}^K and \mathbf{I}^B a core-closed KB $\mathcal{K}' = \langle \mathcal{T}', \mathcal{A}', \mathcal{S}, \mathcal{M} \rangle$ s.t. \mathcal{A}' contains no inequalities and \mathcal{K} is satisfiable iff \mathcal{K}' is satisfiable.*

Proof. We build \mathcal{T}' and \mathcal{A}' by applying the following rules:

- if $(\text{func } P) \in \mathcal{T} \cup \mathcal{S}$ and $\{\text{ga}(P, a_i, a_j), \text{ga}(P, a_i, a_k)\} \subseteq \mathcal{A}$ for $a_j \neq a_k$ s.t. $a_j \in \mathbf{I}^K$ and $a_k \in \mathbf{I}^{K'}$, then replace all occurrences of a_k with a_j in \mathcal{A} .
- if $(\text{func } P) \in \mathcal{T} \cup \mathcal{S}$ and $\{\text{ga}(P, a_i, a_j), \text{ga}(P, a_i, a_k)\} \subseteq \mathcal{A}$ for $a_j \neq a_k$ s.t. $a_j \in \mathbf{I}^M$ or $a_j, a_k \in \mathbf{I}^B$, or if \mathcal{A} contains $a \not\approx a$ for some a , then the KB is not satisfiable and we add $\text{A}^f(a_f)$ to \mathcal{A} and $\text{A}^f \sqsubseteq \perp$ to \mathcal{T} for fresh concept A^f and constant a_f .

Lastly, we remove all inequalities and denote the sets as \mathcal{A}' and \mathcal{T}' . For the rest of this proof, see the full version. \square

Theorem 4. *Under the \mathcal{A} -noUNA assumption, satisfiability of DL-Lite^F core-closed KBs with inequalities is AC⁰ in data complexity and P-complete in combined complexity.*

Solving CQ-assertion Satisfiability Consider a CQ-assertion $\exists \vec{y}. conj(\vec{c}, \vec{y})$. From now on, for simplicity, let us denote it as $conj$, which is treated as the set of atoms that the query comprises. The set $conj$ can be *grounded* by replacing variables \vec{y} with constants \vec{d} . The assignment \vec{d} may contain both constants from \mathbf{I} and fresh constants. When $conj$ is grounded in \vec{d} , denoted $conj(\vec{d})$, all atoms become assertions. Assertions $C(c), r(c, c'), r(c, a), r(a, c), c \not\approx c', c \not\approx a, a \not\approx c$, and $b \not\approx b'$ where $C \in \mathbf{C}^S, r \in \mathbf{R}^S, c, c' \in \mathbf{I}^M, b, b' \in \mathbf{I}^B$, and $a \notin \mathbf{I}^M$ are called \mathcal{M} -assertions. All other assertions are called \mathcal{A} -assertions. A grounded CQ-assertion $conj(\vec{d})$ is therefore partitioned into the two sets $conj_{\mathcal{A}}$ and $conj_{\mathcal{M}}$. The set $conj_{\mathcal{M}}$ is the subset of $conj$ containing \mathcal{M} -assertions. To distinguish the predicate assertions from the inequality assertions we refer to its subsets as $conj_{\mathcal{M}}^*$ and $conj_{\mathcal{M}}^{**}$, respectively. The set $conj_{\mathcal{A}}$ is the subset of $conj$ containing \mathcal{A} -assertions. We add to this set the inequality $a \not\approx a'$ for every distinct $a \in \mathbf{I}^K$ and $a' \in \mathbf{I}^{K'}$. We do this to preserve these objects' distinctness when invoking the satisfiability without UNA, according to the following lemma.

Lemma 10. *An asserted conjunctive query with inequalities $q[\vec{c}] = \exists \vec{y}. conj(\vec{c}, \vec{y})$ is satisfiable w.r.t. $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ iff there exists at least one assignment \vec{d} for the variables in \vec{y} such that $conj(\vec{c}, \vec{d})$ does not include assertion $x \not\approx x$ for every constant x and is grounded in the sets $conj_{\mathcal{A}}$ and $conj_{\mathcal{M}}$ such that $conj_{\mathcal{M}}^* \subseteq \mathcal{M}$ and $\mathcal{K}' = (\mathcal{T}, \mathcal{A} \uplus conj_{\mathcal{A}}, \mathcal{S}, \mathcal{M})$ is satisfiable without the UNA.*

We now show that finding (part of) the assignment \vec{d} , which induces the partition to $conj_{\mathcal{M}}$ and $conj_{\mathcal{A}}$ of Lemma 10, can be done in log-space in \mathcal{M} . We introduce terminology and notation that will be helpful to understand the reasoning behind Algorithm 3. The algorithm manipulates a set of atoms. We refer to this set as $conj$ even though its composition changes between different stages of the running of the algorithm. Each atom in $conj$ is either an *assertion*, whose arguments are all constants, or an *unassigned atom*, whose arguments contain some variables. In high-level, $conj$ contains five types of atoms that play a different role in determining query satisfiability. These five types are: \mathcal{A} -assertions, \mathcal{M} -assertions, \mathcal{A} -atoms, \mathcal{M} -atoms, and atoms. We have already introduced the first two sets, $conj_{\mathcal{A}}$ and $conj_{\mathcal{M}}$, and assumed that $conj_{\mathcal{A}}$ enforces the unique name assumption on \mathbf{I}^K and $\mathbf{I}^{K'}$ by explicitly including additional inequalities. The remaining three types of atoms are defined as follows. (1) Unassigned atoms that refer to concepts in \mathbf{C}^K and roles in \mathbf{R}^K are called \mathcal{A} -atoms as they will inevitably be replaced by \mathcal{A} -assertions. We denote this set as $conj_{\mathcal{A}^?}$ and highlight that it does not contain inequalities, but only concept/role atoms. (2) Unassigned atoms of the form $r(c, y), r(y, c), c \not\approx y$, or $y \not\approx c$ where $r \in \mathbf{R}^S$ and $c \in \mathbf{I}^M$, are called \mathcal{M} -atoms as they will inevitably be

replaced by \mathcal{M} -assertions. We denote this set as $\text{conj}_{\mathcal{M}^?}$. Differently from $\text{conj}_{\mathcal{A}^?}$, $\text{conj}_{\mathcal{M}^?}$ may contain inequalities. Hence, we partition it into the subsets $\text{conj}_{\mathcal{M}^?}^*$ and $\text{conj}_{\mathcal{M}^?}^{\neq}$. (3) The remaining elements in conj are simply called *atoms* as they might be replaced either by constants from $\mathbf{I}^{\mathcal{M}}$ or $\mathbf{I}^{\mathcal{K}}$, turning them into \mathcal{A} -assertions or \mathcal{M} -assertions, respectively. We denote this subset of conj as conj^* and partition it into $\text{conj}_{\mathcal{A}^?}^*$ and $\text{conj}_{\mathcal{M}^?}^*$.

Algorithm 3: $\text{Sat}(\mathcal{K}, \text{conj})$

Inputs : Consistent $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$, set conj
Output: true if conj is satisfiable w.r.t. \mathcal{K}

```

1 def  $\text{Sat}(\mathcal{K}, \text{conj})$ :
2   if ( $\text{conj}$  contains  $x \not\approx x$ ) or ( $\text{conj}_{\mathcal{M}^?}^* \not\subseteq \mathcal{M}$ )
3     then
4       return false;
5    $\text{conj} := \text{conj} \setminus \text{conj}_{\mathcal{M}^?}$ ;
6   if  $\text{conj} == \emptyset$  then
7     return true;
8   if there is  $at \leftarrow \text{conj}_{\mathcal{M}^?}^*$  with free variable  $y$ 
9     then
10      for  $a$  s.t.  $at[a/y] \in \mathcal{M}$  do
11        if  $\text{Sat}(\mathcal{K}, \text{conj}[a/y])$  then
12          return true;
13      return false;
14
15   if there is  $at \leftarrow \text{conj}_{\mathcal{A}^?}^*$  with free variables  $\vec{y}$  then
16     for  $\vec{a}$  s.t.  $at[\vec{a}/\vec{y}] \in \mathcal{M}$  do
17       if  $\text{Sat}(\mathcal{K}, \text{conj}[\vec{a}/\vec{y}])$  then
18         return true;
19
20   return  $\text{Sat}(\mathcal{K}, \text{conj}[\vec{a}/\vec{y}])$ ;
21
22   if there is  $at \leftarrow \text{conj}_{\mathcal{A}^?}$  with free variable  $y$  then
23     for  $a \in \mathbf{I}^{\mathcal{M}}$  do
24       if  $\text{Sat}(\mathcal{K}, \text{conj}[a/y])$  then
25         return true;
26
27   return  $\text{Sat}(\mathcal{K}, \text{conj}[a^y/y])$ ;
28
29   if there is  $at \leftarrow \text{conj}_{\mathcal{M}^?}^{\neq}$  then
30     return  $\text{Sat}(\mathcal{K}, \text{conj}[\vec{a}/\vec{y}])$ ;
31
32    $\text{conj} := \text{conj} \setminus \text{conj}_{\mathcal{M}^?}^{\neq}$ ;
33    $\text{conj}_{\mathcal{A}} := \text{conj}_{\mathcal{A}} \cup \{a \not\approx b \mid a, b \in$ 
34      $\mathbf{I}^{\mathcal{B}} \cup \mathbf{I}^{\mathcal{K}'} \wedge a \neq b\}$ ;
35
36   return  $\text{sat}_{\text{noUNA}}^{\neq}(\mathcal{T}, \mathcal{A} \cup \text{conj}_{\mathcal{A}}, \mathcal{S}, \mathcal{M})$ 

```

Algorithm Description The algorithm searches for an assignment that partitions conj into the sets $\text{conj}_{\mathcal{M}}$ and $\text{conj}_{\mathcal{A}}$ such that $\text{conj}_{\mathcal{M}}$ is consistent with (i.e., included in) \mathcal{M} and $\text{conj}_{\mathcal{A}}$ is satisfiable w.r.t. \mathcal{K} when dropping the UNA. Assignments are found by replacing variables with constants in \mathcal{A} -atoms, \mathcal{M} -atoms, and atoms, which become \mathcal{A} -assertions or \mathcal{M} -assertions; thus, populating the sets

$\text{conj}_{\mathcal{A}}$ and $\text{conj}_{\mathcal{M}}$. The algorithm starts with a set conj that may contain all types of assertions (i.e., $\text{conj} \subseteq \text{conj}_{\mathcal{M}} \cup \text{conj}_{\mathcal{M}^?}^* \cup \text{conj}_{\mathcal{M}^?}^{\neq} \cup \text{conj}_{\mathcal{A}^?}^* \cup \text{conj}_{\mathcal{A}^?}^{\neq} \cup \text{conj}_{\mathcal{A}}$). At each recursive invocation of Algorithm 3 with the currently handled set of atoms conj , we have that conj is certainly unsatisfiable if: (1) it contains any inequality assertions referring to the same pair of symbols or (2) it contains any concept/role \mathcal{M} -assertions that are not in \mathcal{M} (lines 2-3). Hence, when the code execution continues to line 4, all the \mathcal{M} -assertions $\text{conj}_{\mathcal{M}^?}^*$ do not affect satisfiability and all the \mathcal{M} -inequalities $\text{conj}_{\mathcal{M}^?}^{\neq}$ are simply true by the underlying core SNA. These assertions can then be disregarded (line 4). If, after removing these, conj is empty, then it is surely satisfiable (lines 5-6). Otherwise, conj may still contain \mathcal{M} -atoms, \mathcal{A} -atoms, atoms, and \mathcal{A} -assertions (i.e., $\text{conj} \subseteq \text{conj}_{\mathcal{M}^?}^* \cup \text{conj}_{\mathcal{M}^?}^{\neq} \cup \text{conj}_{\mathcal{A}^?}^* \cup \text{conj}_{\mathcal{A}^?}^{\neq} \cup \text{conj}_{\mathcal{A}}$). We prioritize the replacement of atoms that must be mapped to assertions in \mathcal{M} , and try all of these during replacement of both \mathcal{M} -atoms and atoms (lines 8-10 and 13-15). For concept/role \mathcal{M} -atoms in $\text{conj}_{\mathcal{M}^?}^*$ we try all replacements from \mathcal{M} . If we find an atom from $\text{conj}_{\mathcal{M}^?}^*$ that cannot be instantiated with an assertion in \mathcal{M} leading to satisfiability of the replaced query, then conj is surely unsatisfiable (line 11). Otherwise, it is satisfiable (line 10). Similarly, for concept/role atoms in $\text{conj}_{\mathcal{A}^?}^*$, we first try all the replacements in \mathcal{M} (lines 13-15); if none of these replacements makes conj satisfiable, then we try by replacing variables with fresh constants (line 16), turning the generic atom into an \mathcal{A} -assertion. For concept/role \mathcal{A} -atoms in $\text{conj}_{\mathcal{A}^?}$, we first try all the replacements in $\mathbf{I}^{\mathcal{M}}$ (lines 18-20); if none of these replacements makes conj satisfiable, then we try by replacing variables with fresh constants (line 21). Notice that in both cases the \mathcal{A} -atom becomes an \mathcal{A} -assertion. When the algorithm progresses to line 22, conj may still contain inequality atoms, inequality \mathcal{M} -atoms, and \mathcal{A} -assertions (i.e., $\text{conj} \subseteq \text{conj}_{\mathcal{A}^?}^* \cup \text{conj}_{\mathcal{M}^?}^{\neq} \cup \text{conj}_{\mathcal{A}}$). We assign the inequality atoms by replacing variables with fresh constants (lines 22-23) and disregard the inequalities in the set $\text{conj}_{\mathcal{M}^?}^{\neq}$, as they must be true by the core SNA (line 24). If a recursive call reaches line 25, then only \mathcal{A} -assertions are left in conj (i.e., $\text{conj} = \text{conj}_{\mathcal{A}}$). In line 25, we enforce the uniqueness of the pre-existing nodes in $\mathbf{I}^{\mathcal{B}}$ and $\mathbf{I}^{\mathcal{K}'}$ and, finally, invoke the $\text{sat}_{\text{noUNA}}^{\neq}$ algorithm (line 26).

Correctness

Theorem 5. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite^F core-closed KB, q a conjunctive query, and \vec{c} a tuple of constants in \mathcal{K} . Then, $q[\vec{c}]$ is satisfiable w.r.t to \mathcal{K} if and only if $\text{Sat}(\mathcal{K}, q[\vec{c}])$ returns true.

Corollary 3. Query satisfiability in DL-Lite^F core-closed KBs is decided in LOGSPACE in data complexity and is P-complete in combined complexity.

We leave open the question of whether query satisfiability is in AC^0 in data complexity. In algorithm 4, we report the procedure that given a query q computes the set $\text{sat-ans}(q, \mathcal{K})$ w.r.t. a core-closed KB \mathcal{K} . We now state the correctness of the algorithm.

Theorem 6. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ be a DL-Lite $^{\mathcal{F}}$ core-closed KB, q a CQ with inequalities over \mathcal{K} , and \vec{t} a tuple of constants in \mathcal{K} . Then, $\vec{t} \in \text{sat-ans}(q, \mathcal{K})$ iff $\vec{t} \in \text{SAns}(q, \mathcal{K})$.

Algorithm 4: The algorithm SAns

Inputs : CQ $q, \mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$
Output: $\text{sat-ans}(q, \mathcal{K})$

```

1 def SAns ( $\mathcal{K}, q$ ):
2   if not Consistent( $\mathcal{K}$ ) then
3     return  $\emptyset$ 
4   return  $\{ \vec{c} \mid \vec{c} \in \text{AllTup}(q, \mathcal{K}) \wedge \text{Sat}(\mathcal{K}, q[\vec{c}]) = \text{tt} \};$ 
```

8 MUST/MAY Queries

As introduced in section 2, we are interested in Boolean combinations of MUST/MAY queries. Such a Boolean combination is a query ψ that combines nested UCQs in the scope of a MUST or a MAY operator as follows:

$$\psi ::= \neg\psi \mid \psi_1 \wedge \psi_2 \mid \psi_1 \vee \psi_2 \mid \text{MUST } \varphi \mid \text{MAY } \varphi \not\models$$

where $\varphi, \varphi \not\models$ are unions of conjunctive queries potentially containing inequalities. Note that we do not allow nesting of MUST/MAY atoms within ψ as we believe it would not increase its expressive power. Intuitively, the reasoning needed for answering the nested queries can be decoupled from the reasoning needed to answer the higher-level Boolean combination. In particular, the set of answers to the query ψ over a core-closed KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ with individual names \mathbf{I} , denoted as $\text{ANS}(\psi, \mathcal{K})$, is computed as follows. Each nested query $\text{MUST } q[\vec{x}]$ with q the union of conjunctive queries $\bigvee_i q_i$ is resolved by computing the set $\bigcup_i \text{ans}(q_i, \mathcal{K})$ as $\bigcup_i \text{CAns}(q_i, \mathcal{K})$. Each nested query $\text{MAY } q[\vec{x}]$ with q the union of conjunctive queries with inequalities $\bigvee_i q_i$ is resolved by computing the set $\bigcup_i \text{sat-ans}(q_i, \mathcal{K})$ as $\bigcup_i \text{SAns}(q_i, \mathcal{K})$. Connectives \neg, \wedge, \vee are resolved by set complementation w.r.t. \mathbf{I} , intersection, and union, respectively.

Theorem 7. Answering whether a given tuple \vec{t} satisfies a MUST/MAY query over a core-closed DL-Lite $^{\mathcal{F}}$ KBs can be decided in LOGSPACE in data complexity and is NP-complete in combined complexity.

9 Related Work

Many authors have advocated for combining open- and closed-world reasoning in description logics, and proposed a variety of ways to achieve it, e.g., (Baader and Hollunder 1995; Borgwardt and Forkel 2019; Franconi, Ibáñez-García, and Seylan 2011; Gaggl, Rudolph, and Schweizer 2016). One of the most prominent approaches is to extend DLs with *closed predicates* (Franconi, Ibáñez-García, and Seylan 2011), that is, with a set of concepts and roles that are viewed as complete and their extensions fixed in all models. Our combination of open- and closed-world reasoning was tailored specifically for this application domain, and it is not

obvious whether it can be easily expressed using the usual closed predicates, due to the presence of predicates that are closed over part of the domain but open on the rest.

One of the major challenges of extending DLs with closed predicates is to keep the complexity in check. Closed predicates can be simulated in expressive DLs with nominals (like \mathcal{ALCO} and its extensions), but for such logics satisfiability is at least ExpTime-hard (Baader et al. 2017) and conjunctive query entailment 2ExpTime-hard (Ngo, Ortiz, and Šimkus 2016). Moreover, such an encoding is not useful for obtaining improved bounds for the data complexity. Unfortunately, query answering with closed predicates is also intractable in data complexity, and the coNP lower bound applies already to very restricted classes of *conjunctive queries* (CQs) and very weak DLs like DL-Lite_{core} or \mathcal{EL} (Lutz, Seylan, and Wolter 2019). Lutz, Seylan, and Wolter (2013) showed that for most lightweight DLs conjunctive query answering is FOL rewritable only under some *safety restrictions* that make the presence of closed predicates irrelevant. Our core-closed KBs resemble their safe KBs and are FOL rewritable, but the partial closed-world assumption plays an important role, particularly in the query satisfiability problem that arises from the MAY queries.

Semantic approaches to security are being studied (Hendre and Joshi 2015; Brazhuk 2020) and will soon lead to publicly available, community-maintained, threat modeling ontologies. As an example, we refer the reader to the “*Ontology-driven Threat Modeling*” incubator project by OWASP (<https://github.com/OWASP/OdTM>) and reflect on how this will impact the adoption of DL-based semantic reasoning techniques in threat modeling and security. We believe that our MUST/MAY queries could be used within a first-order logic of knowledge/belief (Reiter 1992), as done in (Calvanese et al. 2007a), but this was not in the scope of the application presented in this paper.

10 Conclusion and Future Work

We introduce a variant of DL-Lite $^{\mathcal{F}}$ that combines closed- and open-world reasoning within the same predicates. Our variant is tailored for the modeling of cloud infrastructure and allows to reason about security issues that might arise in such applications. We avoid the complexity price usually involved in reasoning with closed predicates and show that we keep the convenient complexity of DL-Lite $^{\mathcal{F}}$ for KB satisfiability and conjunctive query answering, and that conjunctive query satisfiability is also tractable. We combine query answering and satisfiability in a logic that includes must and may queries over KBs, as required for testing security issues.

As future work, we are interested in including more complex knowledge in the \mathcal{T} -box while still keeping (data) complexity tractable. For example, complex role inclusions would be required to reason about dataflow, which is a central aspect of security. Also, to be able to reason about permissions, we would have to consider non-monotone extensions. Practically, we are interested in logical languages that would allow security engineers to pose security queries in an intuitive and easy-to-use way.

References

Artale, A.; Calvanese, D.; Kontchakov, R.; and Zakharyaschev, M. 2009. The dl-lite family and relations. *J. Artif. Intell. Res.* 36:1–69.

Baader, F., and Hollunder, B. 1995. Embedding defaults into terminological knowledge representation formalisms. *J. of Automated Reasoning* 14(1):149–180.

Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. *An Introduction to Description Logic*. Cambridge University Press.

Borgwardt, S., and Forkel, W. 2019. Closed-world semantics for conjunctive queries with negation over ELH_{\bot} ontologies. In *JELIA*, volume 11468 of *Lecture Notes in Computer Science*, 371–386. Springer.

Brazhuk, A. 2020. Security patterns based approach to automatically select mitigations in ontology-driven threat modelling.

Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.; and Rosati, R. 2007a. Eql-lite: Effective first-order query processing in description logics. In *IJCAI*, 274–279.

Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.; and Rosati, R. 2007b. Tractable reasoning and efficient query answering in description logics: The *DL-Lite* family. *J. Autom. Reason.* 39(3):385–429.

Cauli, C.; Li, M.; Piterman, N.; and Tkachuk, O. 2021a. Pre-deployment security assessment for cloud services through semantic reasoning. In *Computer Aided Verification - 33rd International Conference, CAV 2021, Proceedings*, Lecture Notes in Computer Science.

Cauli, C.; Li, M.; Piterman, N.; and Tkachuk, O. 2021b. Pre-deployment security assessment for cloud services through semantic reasoning. Full version <https://gup.ub.gu.se/publication/304989>, Last accessed on 2021-07-14.

Franconi, E.; Ibáñez-García, Y. A.; and Seylan, I. 2011. Query answering with dboxes is hard. *Electr. Notes Theor. Comput. Sci.* 278:71–84.

Gaggl, S. A.; Rudolph, S.; and Schweizer, L. 2016. Fixed-domain reasoning for description logics. In Kaminka, G. A.; Fox, M.; Bouquet, P.; Hüllermeier, E.; Dignum, V.; Dignum, F.; and van Harmelen, F., eds., *Proc. of the 22nd Eur. Conf. on Artificial Intelligence (ECAI 2016)*, volume 285 of *Frontiers in Artificial Intelligence and Applications*, 819–827. IOS Press.

Hendre, A., and Joshi, K. P. 2015. A semantic approach to cloud security and compliance. In *CLOUD*, 1081–1084. IEEE Computer Society.

Lutz, C.; Seylan, I.; and Wolter, F. 2013. Ontology-based data access with closed predicates is inherently intractable(sometimes). In *Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI'2013)*, 1024–1030. IJCAI/AAAI.

Lutz, C.; Seylan, I.; and Wolter, F. 2019. The data complexity of ontology-mediated queries with closed predicates. *Logical Methods in Computer Science* 15(3).

Ngo, N.; Ortiz, M.; and Šimkus, M. 2016. Closed predicates in description logics: Results on combined complexity. In *Proc. Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2016)*, 237–246. AAAI Press.

Reiter, R. 1992. What should a database know? *J. Log. Program.* 14(1&2):127–153.

Tobies, S. 1999. A nextime-complete description logic strictly contained in c^2 . In *CSL*, volume 1683 of *Lecture Notes in Computer Science*, 292–306. Springer.

Vardi, M. Y. 1982. The complexity of relational query languages (extended abstract). In *STOC*, 137–146. ACM.

Supplementary Material

S.1 Proofs of Section 5

Proof of Lemma 1

Proof. By construction, $bchase_i(\mathcal{K}, \mathcal{M})$ is built by adding fresh assertions to the set \mathcal{Y}_{i-1} according to the rules in definition 2. It is easy to see from the cases **c1-c8** that none of these fresh assertions is an \mathcal{M} -assertion. \square

Proof of Lemma 3

Proof. Since we have already shown that $can(\mathcal{K})$ is a model of \mathcal{M} , we need to show three things: (1) $can(\mathcal{K})$ satisfies all assertions in \mathcal{A} , (2) $can(\mathcal{K})$ satisfies all positive axioms in $PI_{\mathcal{T}}$, and (3) $can(\mathcal{K})$ satisfies all positive axioms in $PI_{\mathcal{S}}$. (1) follows from the fact that $can(\mathcal{K})$ contains \mathcal{A} . To prove (2) and (3), we need to proceed by contradiction considering all cases for axioms in $PI_{\mathcal{T}}$ and $PI_{\mathcal{S}}$ and the fact that \mathcal{M} is assumed to be consistent w.r.t. \mathcal{S} . The proof is similar to that of Lemma 7 in (Calvanese et al. 2007b). In particular, let us note that the rules **c1-c8**, that are used in the construction of the $bchase$, cover all cases of positive axioms in $\mathcal{T} \cup \mathcal{S}$. For each of these cases, the rule is triggered when an assertion that should be logically implied by another, according to the implication established by the corresponding rule's axiom, is missing. Hence, for every axiom $\alpha = B_1 \sqsubseteq B_2$, it is possible to prove by contradiction that if an object a such that $B_1(a) \in can(\mathcal{K}) \wedge B_2(a) \notin can(\mathcal{K})$ exists, then the corresponding rule would have been triggered, and the assertion $B_2(a)$ added to $can(\mathcal{K})$, leading to a contradiction. While the above statement is valid for all the nodes in $\mathcal{I}^{\mathcal{K}}$, it applies to nodes in $\mathcal{I}^{\mathcal{M}}$ only for rules **c1-c4**. For rules **c5-c8**, that do not apply to objects $a_{\mathcal{M}} \in \mathcal{I}^{\mathcal{M}}$, we need to recall that \mathcal{M} is assumed to be consistent with respect to \mathcal{S} . \square

Proof of Lemma 4

Proof. \Rightarrow We show that $db(\mathcal{A}) \cup lts(\mathcal{M}) \models (F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$ if $can(\mathcal{K}) \models (F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$. Since $can(\mathcal{K})$ is built from the union of $lts(\mathcal{M})$, which is the model of \mathcal{M} , and of the $bchase(\mathcal{K}, \mathcal{M})$, which contains \mathcal{A} , it follows that if a functionality axiom is satisfied by $can(\mathcal{K})$ then it must be satisfied by the union $db(\mathcal{A}) \cup lts(\mathcal{M})$ of its components's minimal interpretations.

\Leftarrow We show that if $db(\mathcal{A}) \cup lts(\mathcal{M}) \models (F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$ then $can(\mathcal{K}) \models (F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$. We proceed by induction on the construction of the canonical model, when seen by progressing through the construction of the chase.

Base Step. We have that $can_0(\mathcal{K}) = (\Delta^{can(\mathcal{K})}, .^{can_0(\mathcal{K})})$ where $.^{can_0(\mathcal{K})} = .^{lts(\mathcal{M})} \cup .^{db(\mathcal{A})}$ and since by assumption $.^{lts(\mathcal{M})} \cup .^{db(\mathcal{A})} \models (F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$ then $can_0(\mathcal{K}) \models (F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$.

Inductive Step. Let us assume by contradiction that there exists an i such that $can_i(\mathcal{K})$ is a model of $(F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$ but $can_{i+1}(\mathcal{K})$ is not. According to this assumption, there is an axiom α that when applied to an assertion $f \in can_i(\mathcal{K})$, following one of the rules **c1-c8**, violates a functionality assertion. The only rules that add fresh role assertions, and that can therefore violate functionality, are the rules **c3, c4, c7, and c8**. Let us

consider the cases **c3** and **c4**. In both cases, we have $can_{i+1}(\mathcal{K}) = can_i(\mathcal{K}) \cup \{ga(\mathcal{P}_{\mathcal{K}}, a, a_{new})\}$ where a_{new} is a new constant symbol introduce according to the total order in the set \mathcal{I}^+ . Since $can_{i+1}(\mathcal{K})$ is not a model of $(F_{\mathcal{T}}, \mathcal{A}, F_{\mathcal{S}}, \mathcal{M})$, there must exist at least a functionality axioms α that is not satisfied by $can_{i+1}(\mathcal{K})$. However, all three following cases lead to a contradiction:

- If $\alpha = Func(\mathcal{P}_{\mathcal{K}})$, there must exists pairs (x, y) and (x, z) of objects in $\mathcal{P}_{\mathcal{K}}^{can_{i+1}(\mathcal{K})}$ s.t. $y \neq z$. However, since rule **c3** or **c4** was applied, then no other $\mathcal{P}_{\mathcal{K}}$ -assertion departing from a was contained in $can_i(\mathcal{K})$ and only $ga(\mathcal{P}_{\mathcal{K}}, a, a_{new})$ is added to $can_{i+1}(\mathcal{K})$. Therefore, the functionality axiom must have been not satisfied in $can_i(\mathcal{K})$, which is a contradiction.
- If $\alpha = Func(\mathcal{P}_{\mathcal{K}}^-)$, there must exists pairs (y, x) and (z, x) of objects in $\mathcal{P}_{\mathcal{K}}^{can_{i+1}(\mathcal{K})}$ s.t. $y \neq z$. Since a_{new} is fresh in $can_{i+1}(\mathcal{K})$, there could not have been another pair (a', a_{new}) with $a \neq a'$ contained in $can_i(\mathcal{K})$ and therefore this pair is also not in $can_{i+1}(\mathcal{K})$. Therefore, the functionality axiom must have been not satisfied in $can_i(\mathcal{K})$, which is a contradiction.
- If $\alpha = Func(\mathcal{P}')$ with $\mathcal{P}' \neq \mathcal{P}_{\mathcal{K}}$, we would conclude that the axiom is already not satisfied in $can_i(\mathcal{K})$, but this would lead to a contradiction.

Let us now consider the rules **c7** and **c8**. In both cases, we have that $can_{i+1}(\mathcal{K}) = can_i(\mathcal{K}) \cup \{ga(\mathcal{P}_{\mathcal{S}}, a_{\mathcal{K}}, a_{new})\}$. Similarly to the above, all three following cases lead to a contradiction:

- If $\alpha = Func(\mathcal{P}_{\mathcal{S}})$, then there must exists pairs (x, y) and (x, z) of objects in $\mathcal{P}_{\mathcal{S}}^{can_{i+1}(\mathcal{K})}$ s.t. $y \neq z$. However, since rule **c7** or **c8** was applied, then no other $\mathcal{P}_{\mathcal{S}}$ -assertion departing from $a_{\mathcal{K}}$ was contained in $can_i(\mathcal{K})$ (neither in \mathcal{X} nor in \mathcal{Y}). Therefore, the functionality axiom must have been not satisfied in $can_i(\mathcal{K})$, which is a contradiction.
- If $\alpha = Func(\mathcal{P}_{\mathcal{S}}^-)$, there must exists pairs (y, x) and (z, x) of objects in $\mathcal{P}_{\mathcal{S}}^{can_{i+1}(\mathcal{K})}$ s.t. $y \neq z$. Since a_{new} is fresh in $can_{i+1}(\mathcal{K})$, no other pair (a', a_{new}) with $a' \neq a_{\mathcal{K}}$ could have been contained in $can_i(\mathcal{K})$ and, therefore, is also not contained in $can_{i+1}(\mathcal{K})$. Therefore, the functionality axiom must have been not satisfied in $can_i(\mathcal{K})$, which is a contradiction.
- If $\alpha = Func(\mathcal{P}')$ with $\mathcal{P}' \neq \mathcal{P}_{\mathcal{S}}$, we would conclude that the axiom is already not satisfied in $can_i(\mathcal{K})$, but this would lead to a contradiction.

Proof of Lemma 5

Proof. The proof follows as, by construction, all assertions in $cln(\mathcal{T} \cup \mathcal{S})$ are logically implied by $\mathcal{T} \cup \mathcal{S}$. \square

Proof of Lemma 6

Proof. \Rightarrow We show that if $can(\mathcal{K})$ is a model of \mathcal{K} , then $db(\mathcal{A}) \cup lts(\mathcal{M})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} . Since $can(\mathcal{K})$ models \mathcal{K} and, by Lemma 5, all assertions in $cln(\mathcal{T} \cup \mathcal{S})$ are logically implied by \mathcal{K} , then $can(\mathcal{K})$

also models $cln(\mathcal{T} \cup \mathcal{S})$. Let us recall that, for every atomic concept $A \in \mathbf{C}$ we have that $A^{db(\mathcal{A})} \cup A^{lts(\mathcal{M})} = A^{can_0(\mathcal{K})} \subseteq A^{can(\mathcal{K})}$, and for every atomic role $R \in \mathbf{R}$ we have that $R^{db(\mathcal{A})} \cup R^{lts(\mathcal{M})} = R^{can_0(\mathcal{K})} \subseteq R^{can(\mathcal{K})}$. Since $can(\mathcal{K})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$; since the restriction $can(\mathcal{K})$ to $can_0(\mathcal{K})$ only affects extensions in the *bchse* and does not affect extensions in *lts*(\mathcal{M}); and since the nature of functionality and negative inclusion axioms is such that they cannot be contradicted by restricting the *bchase* extension of atomic concepts and roles, then we can conclude that $db(\mathcal{A}) \cup lts(\mathcal{M})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$.

\Leftarrow We show that if $db(\mathcal{A}) \cup lts(\mathcal{M})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} , then $can(\mathcal{K})$ is a model of \mathcal{K} . To do so, we need to prove that $can(\mathcal{K})$ is a model of the functionality and negative inclusion axioms in \mathcal{K} (since, by Lemma 3, $can(\mathcal{K})$ is always a model of the positive inclusion axioms in \mathcal{K} , we do not need to include those in the proof). We prove the latter statement by showing that $can(\mathcal{K})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} . That is, we prove that if $db(\mathcal{A}) \cup lts(\mathcal{M})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} , then $can(\mathcal{K})$ is a model of it too. We do so by induction on the construction of the *bchase*(\mathcal{K}).

Base Step. By construction, we have $can_0(\mathcal{K}) = (\Delta^{can(\mathcal{K})}, .^{can_0(\mathcal{K})})$ where $.^{can_0(\mathcal{K})} = (.^{lts(\mathcal{M})} \cup db(\mathcal{A}))$. Therefore, $A^{can_0(\mathcal{K})} = A^{lts(\mathcal{M})} \cup A^{db(\mathcal{A})}$, for every atomic concept A ; and $R^{can_0(\mathcal{K})} = R^{lts(\mathcal{M})} \cup R^{db(\mathcal{A})}$, for every atomic role R . Given that by assumption $db(\mathcal{A}) \cup lts(\mathcal{M})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} , it follows that $can_0(\mathcal{K})$ is also a model for $cln(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} .

Inductive Step. Let us assume by contradiction that $can_i(\mathcal{K})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$, \mathcal{A} , and \mathcal{M} , and $can_{i+1}(\mathcal{K})$ is not. Let us recall that $can_{i+1}(\mathcal{K})$ is obtained from its predecessor by applying one of the *bchase* rules **c1-c8**. In the following, we use the symbol B to refer to a complex DL-Lite^F concept, that is, a concept $B = A$ or $B = \exists P$. A rule is executed because a PI axiom $B_1 \sqsubseteq B_2 = A_1 \sqsubseteq B_2$ (resp. $\exists P \sqsubseteq B_2$) is applicable to an assertion $A_1(a)$ (resp. $ga(P, a, b)$) in $can_i(\mathcal{K})$. As a result of the rule's application, we have that $can_{i+1}(\mathcal{K}) = can_i(\mathcal{K}) \cup \{A_2(a)\}$ if $B_2 = A_2$ or $can_{i+1}(\mathcal{K}) = can_i(\mathcal{K}) \cup \{ga(P', a, b)\}$ if $B_2 = \exists P'$. Since $can_i(\mathcal{K})$ is a model of $cln(\mathcal{T} \cup \mathcal{S})$ and $can_{i+1}(\mathcal{K})$ is not, there must exist a negative inclusion axiom $\alpha \in cln(\mathcal{T} \cup \mathcal{S})$ s.t. $can_i(\mathcal{K})$ models α and $can_{i+1}(\mathcal{K})$ does not model α . The axiom α must be of the form $B_2 \sqsubseteq \neg B_3$ or $B_3 \sqsubseteq \neg B_2$, while $can_{i+1}(\mathcal{K})$ must contain an assertion $A_3(a)$ if $B_3 = A_3$, or $ga(P'', a, b)$ if $B_3 = \exists P''$. If such axiom exists in $cln(\mathcal{T} \cup \mathcal{S})$, then the set $cln(\mathcal{T} \cup \mathcal{S})$ must also contain the result of its combination with $B_1 \sqsubseteq B_2$ (the PI that triggers the application of rule); that is, the axiom $B_1 \sqsubseteq \neg B_3$ must also be in $cln(\mathcal{T} \cup \mathcal{S})$. If $B_2 \neq B_3$, then the axiom $B_1 \sqsubseteq \neg B_3$ would not be satisfied in $can_i(\mathcal{K})$, which leads to a contradiction. If $B_2 = B_3$, then $B_2 \sqsubseteq \neg B_2$ would not be satisfied in $can_i(\mathcal{K})$, which also leads to a contradiction.

□

Proof of Corollary 1

Proof. We first consider the case in which α is a NI axiom. Let us assume by contradiction that $\mathcal{T} \cup \mathcal{S} \models \alpha$ and $cln(\mathcal{T} \cup \mathcal{S}) \not\models \alpha$. We now show that from the fact that $cln(\mathcal{T} \cup \mathcal{S}) \not\models \alpha$ one can construct a model of $\mathcal{T} \cup \mathcal{S}$ that does not satisfy α , thus obtaining a contradiction.

Let us assume that $\alpha = A_1 \sqsubseteq \neg A_2$, and consider the DL-Lite^F KB $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ where $\mathcal{M} = \emptyset$ and $\mathcal{A} = \{A_1(a), A_2(a)\}$. We show that $can(\mathcal{K})$ is the model that we are looking for, that is, the model such that $can(\mathcal{K}) \models \mathcal{T} \cup \mathcal{S}$ and $can(\mathcal{K}) \not\models \alpha$. The fact that $can(\mathcal{K}) \not\models \alpha$ is clear from the content of \mathcal{A} . We proceed to prove that $can(\mathcal{K}) \models \mathcal{T} \cup \mathcal{S}$. The only NIs that can be violated by $db(\mathcal{A}) \cup lts(\mathcal{M})$ are $A_1 \sqsubseteq \neg A_2$, its contrapositive form $A_2 \sqsubseteq \neg A_1$, $A_1 \sqsubseteq \neg A_1$, and $A_2 \sqsubseteq \neg A_2$. Since \mathcal{M} is empty, we concentrate on $db(\mathcal{A})$. By assumption, we know that $cln(\mathcal{T} \cup \mathcal{S}) \not\models A_1 \sqsubseteq \neg A_2$ and, therefore, $cln(\mathcal{T} \cup \mathcal{S}) \not\models A_2 \sqsubseteq \neg A_1$. It follows that it cannot model neither the two remaining axioms $A_1 \sqsubseteq \neg A_1$, and $A_2 \sqsubseteq \neg A_2$. Hence, we can conclude that $db(\mathcal{A}) \models cln(\mathcal{T} \cup \mathcal{S})$ and therefore $db(\mathcal{A}) \models cln(\mathcal{T} \cup \mathcal{S}) \cup \mathcal{A} \cup \mathcal{M}$. From Lemma 6 it follows that $can(\mathcal{K})$ is a model of \mathcal{K} . The same claim can be proven for the cases where α has a different form.

We now consider the case in which α is a functionality axiom. In a similar way, we assume by contradiction that $\mathcal{T} \cup \mathcal{S} \models \alpha$ and $cln(\mathcal{T} \cup \mathcal{S}) \not\models \alpha$. We show that from $cln(\mathcal{T} \cup \mathcal{S}) \not\models \alpha$ one can construct a model of $\mathcal{T} \cup \mathcal{S}$ that does not satisfy α , obtaining a contradiction. The proof is similar to the one conducted for the case of NI, by using the ABox $\mathcal{A} = \{ga(P, a, b), ga(P, a, c)\}$. □

Proof of Lemma 7

Proof. \Rightarrow Follows from the definition of satisfiability for \mathcal{K} KB BSs. If $can(\mathcal{K})$ is a model of \mathcal{K} , then \mathcal{K} is obviously satisfiable.

\Leftarrow We prove this direction by contraposition. We show that if $can(\mathcal{K})$ is not a model of \mathcal{K} , then \mathcal{K} is not satisfiable. By Lemma 6, it follows that $db(\mathcal{A}) \cup lts(\mathcal{M}) \not\models (cln(\mathcal{T} \cup \mathcal{S}), \mathcal{A}, \mathcal{M})$, and therefore $db(\mathcal{A}) \cup lts(\mathcal{M}) \not\models cln(\mathcal{T} \cup \mathcal{S})$. This means that there exists a negative inclusion axiom α such that $db(\mathcal{A}) \cup lts(\mathcal{M}) \not\models \alpha$ and $cln(\mathcal{T} \cup \mathcal{S}) \models \alpha$. By Lemma 5, we have that $\mathcal{T} \cup \mathcal{S} \models \alpha$. Let us assume that α is of the form $A_1 \sqsubseteq \neg A_2$. Then, there exists $a \in \Delta^{db(\mathcal{A}) \cup lts(\mathcal{M})}$ such that $a \in A_1^{db(\mathcal{A}) \cup lts(\mathcal{M})}$ and $a \in A_2^{db(\mathcal{A}) \cup lts(\mathcal{M})}$. Let us now assume by contradiction that \mathcal{K} is satisfiable and therefore there exists an interpretation $\mathcal{J} = (\Delta^{\mathcal{J}}, .^{\mathcal{J}})$ that is a model of \mathcal{K} . We construct an isomorphism ψ from $\Delta^{db(\mathcal{A}) \cup lts(\mathcal{M})}$ to $\Delta^{\mathcal{J}}$ such that $\psi(a) = a^{\mathcal{J}}$ for each constant occurring in $\mathcal{A} \cup \mathcal{M}$. Since \mathcal{J} is a model of $\mathcal{A} \cup \mathcal{M}$ it satisfies all their membership assertions, including $\psi(a) \in A_1^{\mathcal{J}}$ and $\psi(a) \in A_2^{\mathcal{J}}$. However, this makes the NI $A_1 \sqsubseteq \neg A_2$ be violated also in \mathcal{J} , contradicting the fact that \mathcal{J} is a model of \mathcal{K} .

□

Proof of Corollary 2

Proof. Directly follows from Lemma 8. □

S.2 Proofs of Section 6

Proof of Theorem 2

Proof. Follows from the correctness of the corresponding procedure *Answer* in the standard setting, cf. (Calvanese et al. 2007b), when considered over a single CQ. In particular, let us stress that core-closed KBs do not introduce any significant difference with respect to the rewrite procedure and, in general, with respect to CQ entailment. \square

Proof of Theorem 3

Proof. Follows from the complexity of the standard setting (Calvanese et al. 2007b) \square

S.3 Proofs of Section 7

Proof of Lemma 9

Proof. We now prove that $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ is satisfiable under \mathcal{A} – noUNA if and only if $\mathcal{K}' = \langle \mathcal{T}', \mathcal{A}', \mathcal{S}, \mathcal{M} \rangle$ is satisfiable with the UNA.

- \Leftarrow If \mathcal{K}' is satisfiable with the UNA, then all the KBs, including \mathcal{K} , that are obtained from it by following a procedure that is the inverse of the one presented above, are satisfiable under the \mathcal{A} – noUNA.
- \Rightarrow If $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ is satisfiable under the \mathcal{A} – noUNA, then there exists at least one model $\mathcal{I} = (\text{adom}(\mathcal{M}) \uplus \mathbf{I}^{\mathcal{K}'} \uplus \mathbf{I}^+, \mathcal{I})$, where $\mathbf{I}^{\mathcal{K}'} = \mathbf{I}^{\mathcal{K}} \setminus \mathbf{I}^B$, and a non-injective function $f : \mathbf{I}^B \cup \mathbf{I}^{\mathcal{K}'} \uplus \mathbf{I}^+ \rightarrow \Delta^{\mathbf{I}^B} \uplus \Delta^{\mathbf{I}^{\mathcal{K}'} \uplus \mathbf{I}^+}$ s.t. $f : \mathbf{I}^B \rightarrow \Delta^{\mathbf{I}^B}$, that associates each constant from the set of open individual names $\mathbf{I}^{\mathcal{K}'} \uplus \mathbf{I}^+$ with an element from $\Delta^{\mathbf{I}^B} \uplus \Delta^{\mathbf{I}^{\mathcal{K}'} \uplus \mathbf{I}^+}$, and each constant name \mathbf{I}^B with a boundary domain node $\Delta^{\mathbf{I}^B}$. This function can, thus, map open individuals onto boundary nodes. Since \mathcal{I} is a model of \mathcal{K} , it satisfies all functional axioms in $\mathcal{T} \cup \mathcal{S}$. In particular, we have that for all functionality axioms $\alpha = (\text{Func } P) \in \mathcal{T} \cup \mathcal{S}$, and for all a, a_k, a_j s.t. $a_j \in (\mathbf{I} \setminus \text{adom}(\mathcal{M}))$ and $a_k \in (\mathbf{I} \setminus \mathbf{I}^{\mathcal{M}})$, if $\mathcal{I} \models \text{ga}(P, a, a_k) \wedge \text{ga}(P, a, a_j)$ then $f(a_k) = f(a_j)$. Given that $\mathcal{I} \models \text{ga}(P, a, a_k) \wedge \text{ga}(P, a, a_j)$ if and only if $\{\text{ga}(P, a, a_k), \text{ga}(P, a, a_j)\} \subseteq \mathcal{A}$, then we have that $f(a_k) = f(a_j)$, for all a_k, a_j s.t. $a_j \in (\mathbf{I} \setminus \text{adom}(\mathcal{M}))$ and $a_k \in (\mathbf{I} \setminus \mathbf{I}^{\mathcal{M}})$, s.t. $\exists (\text{Func } P) \in \mathcal{T} \cup \mathcal{S}$ and a such that $\{\text{ga}(P, a, a_k), \text{ga}(P, a, a_j)\} \subseteq \mathcal{A}$. Let f be the minimal such function, and let f' be obtained from it by replacing each occurrence of a_k with a_j . Clearly, f' is injective, i.e., there is no pair x, x' of distinct objects such that $f'(x) = f'(x')$. Now, let \mathcal{K}' be computed from \mathcal{K} according to the procedure presented above. We have that \mathcal{K}' is satisfiable under \mathcal{A} – noUNA and with function f' . But since f' is an injective function, then \mathcal{K}' is satisfiable also under the UNA. \square

Proof of Theorem 4

Proof. The upper bound in combined complexity follows from corollary 2 and from the fact that the construction of \mathcal{K}' is done in polynomial time in \mathbf{I}^B and $\mathbf{I}^{\mathcal{K}'}$. The lower bound in combined complexity follows from results in (Artale et al. 2009). The data complexity follows from corollary 2. \square

Proof of Lemma 10

Proof. Consider a CQ-assertion $q[\vec{c}] = \exists \vec{y}. \text{conj}(\vec{c}, \vec{y})$.

- \Rightarrow If $q[\vec{c}]$ is satisfiable w.r.t. $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$ then there is an interpretation $\mathcal{I} = \langle \Delta^{\mathcal{I}}, \cdot^{\mathcal{I}} \rangle$ such that \mathcal{I} satisfies $q[\vec{c}]$. Let \vec{e} be the assignment to \vec{y} such that $\text{conj}(\vec{c}, \vec{e})$ is satisfied. We partition \vec{e} to elements in $\mathbf{I}^{\mathcal{M}}$ or $\mathbf{I}^{\mathcal{K}}$, and elements not in these sets. Consider the assignment \vec{d} obtained from \vec{e} by replacing every element not in $\mathbf{I}^{\mathcal{M}} \cup \mathbf{I}^{\mathcal{K}}$ by a fresh constant. Let $\text{conj}_{\mathcal{M}}$ and $\text{conj}_{\mathcal{A}}$ be the sets arising from the grounding of conj as $\text{conj}(\vec{d})$. By $\mathcal{I} \models^{\text{CWA}} \mathcal{M}$, we conclude that $\text{conj}_{\mathcal{M}}^* \subseteq \mathcal{M}$. The interpretation \mathcal{I}' that enhances \mathcal{I} by assigning the fresh constants appearing in \vec{d} to the elements to which they are assigned by \vec{e} shows that that $\mathcal{K}' = \langle \mathcal{T}, \mathcal{A} \uplus \text{conj}_{\mathcal{A}}, \mathcal{S}, \mathcal{M} \rangle$ is satisfiable without the UNA.
- \Leftarrow Consider the assignment \vec{d} that grounds conj to $\text{conj}_{\mathcal{M}}$ and $\text{conj}_{\mathcal{A}}$ and the interpretation \mathcal{I} satisfying \mathcal{K}' . By definition, $\mathcal{I} \models^{\text{CWA}} \mathcal{M}$ and \mathcal{I} models \mathcal{T}, \mathcal{S} , and $\mathcal{A} \cup \text{conj}_{\mathcal{A}}$. We convert the assignment \vec{d} to an assignment \vec{e} that ranges over $\mathbf{I}^{\mathcal{M}}$, $\mathbf{I}^{\mathcal{K}}$ and the constants that are identified by \mathcal{I} with the fresh constants appearing in \vec{d} . Using the assignment \vec{e} and \mathcal{I} we see that $q[\vec{c}]$ is satisfiable w.r.t. $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}, \mathcal{S}, \mathcal{M} \rangle$. \square

Proof of Theorem 5

Proof. \Rightarrow Suppose that $q[\vec{c}]$ is satisfiable w.r.t. \mathcal{K} and assume by way of contradiction that the algorithm returns false. We use the formulation of Lemma 10. Consider the assignment \vec{d} guaranteed by the Lemma. We use \vec{d} to guide the selection of the algorithm and show a contradiction. In the case that \vec{d} is the empty assignment there are no free variables in conj . The algorithm cannot return false in line 3 as the query itself is satisfiable by assumption. If the algorithm returns true in line 6, we are done. Otherwise, the algorithm proceeds to lines 24-26. There, we enforce the uniqueness of the pre-existing nodes \mathbf{I}^B and $\mathbf{I}^{\mathcal{K}'}$ and call the satisfiability without unique name assumption. By assumption $q[\vec{c}]$ is satisfiable, which implies that the KB is satisfiable. It follows that the same interpretation can be used for the satisfiability without the unique name assumption in line 26. Consider an \mathcal{M} -atom at appearing in conj with a free variable y . The assignment \vec{d} into at is later found in \mathcal{M} . It follows that for the free variable y in at there is an a such that $at[a/y] \in \mathcal{M}$ as required on line 8. It follows that returning false at line 11 is not possible.

Consider an atom at that refers to either a role $r \in \mathbf{R}^S$ or a concept $C \in \mathbf{C}^S$ and assigned by \vec{d} with at least one value in \mathbf{I}^M . It follows for the free variables \vec{y} in at there is an assignment \vec{a} such that $at[\vec{a}/\vec{y}] \in M$. This matches the condition in line 13.

Consider another atom at that refers to either a role $r \in \mathbf{R}^S$ or a concept $C \in \mathbf{C}^S$ and is assigned by \vec{d} with constants not in \mathbf{I}^M . As we assume that the algorithm returns false, trying to match this atom by assigning it constants that match atoms in M (line 13) does not succeed. Thus, the algorithm attempts to replace the variables in at by fresh constants (line 16). Notice that in the case that \vec{d} assignes both variables in the same atom by one constant (not in \mathbf{I}^M), this is not an issue as the satisfiability without unique name assumption (line 26) can unify the two fresh constants.

Consider an atom at that refers to either a role $r \in \mathbf{R}^K$ or a concept $C \in \mathbf{C}^K$ with a variable y that is assigned by \vec{d} a constant in \mathbf{I}^M . It follows that the loop in lines 18-20 tries to assign y with this value in \mathbf{I}^M . As we assume that the algorithm returns false, if the algorithm tries to assign to this variable other values in \mathbf{I}^M this will fail. Notice that if the same variable appears in an atom that refers to predicates \mathbf{R}^S or \mathbf{C}^S then it would already have been replaced by lines 12-15 with a matching atom in M .

Consider an atom at that refers to either a role $r \in \mathbf{R}^K$ or a concept $C \in \mathbf{C}^K$ with a variable y that is assigned by \vec{d} a constant not in \mathbf{I}^M . As we assume that the algorithm returns false, if the algorithm tries to assign to this variable values in \mathbf{I}^M in lines 17-20 this will fail. It follows that the variable y is replaced by a fresh constant (line 21).

When the algorithm reaches line 22 all the pure atoms have already been made to assertions by previous stages of the algorithm. The only atoms that may remain unassigned in $conj$ are inequalities where either one or both of the variables are unassigned. A variable y appearing in such an inequality is assigned in \vec{d} to either a value not in \mathbf{I}^M or to a value in \mathbf{I}^M . In either case, the algorithm assigns to such variables fresh constants. Consider a variable y appearing in inequalities that is assigned in \vec{d} to a value not in \mathbf{I}^M . The fresh constant replaced into this variable can be united by the satisfiability algorithm without unique name assumption to have the same interpretation as the value assigned to y by \vec{d} . Consider a variable y appearing in inequalities that is assigned in \vec{d} to a value in \mathbf{I}^M . Notice that the variable y appears *only* in inequalities as all variables in all pure atoms have been already replaced. Let Y be the set of fresh constants that are assigned by the algorithm to variables y that are assigned by \vec{d} a value in \mathbf{I}^M . The interpretation of such fresh constants by the satisfiability without the unique name assumption *cannot* be equal to \mathbf{I}^M . However, an interpretation that keeps these fresh constants different from all other constants will satisfy the same inequalities.

Finally, the satisfiability without the unique name assumption is called in line 26. Consider the fresh constants appearing in $conj_A$ in line 26. Those of the fresh con-

stants were replaced into variables that are matched by \vec{d} to values in $\mathbf{I}^{K'} \cup \mathbf{I}^B$. It follows that the algorithm is free to unify them with the value assigned to them by \vec{d} . Those of the fresh constants that are in the set Y of variables appearing only in inequalities that are assigned in \vec{d} to values in \mathbf{I}^M are left as unique fresh individuals.

We see that the resulting assignment is satisfiable by the same model that satisfies \vec{d} as, indeed, the fresh constants in Y are compared under \vec{d} to \mathbf{I}^M elements, which are different from all other elements. This is possible also for the fresh elements. It follows that the algorithm returns true leading to a contradiction.

\Leftarrow Suppose that $\text{Sat}(\mathcal{K}, q[\vec{c}])$ returns true. Let \vec{d}/\vec{y} be the sequence of replacements done by the algorithm. Denote $conj = q[\vec{c}, \vec{d}/\vec{y}]$. That is, $conj$ is the result of replacing the variables in \vec{y} by the found constants \vec{d} . Clearly, we have $conj[\vec{d}/\vec{y}]$ is the union of $conj_M^*$, $conj_M^*$, and $conj_A$. That is, $conj_A^*$, $conj_A^*$, $conj_M^*$, and $conj_M^*$ are all empty.

By the check in line 2, we have that $x \not\approx x$ is not included in $conj$. Furthermore, $conj_M^* \subseteq M$.

The final check (line 19) is to call $\text{sat}_{\text{noUNA}}^*(\mathcal{T}, \mathcal{A} \cup conj_A, \mathcal{S}, M)$. This corresponds to the requirement in Lemma 10. \square

Proof of Corollary 3

Lemma 11. $\text{Sat}(\mathcal{K}, q[\vec{c}])$ is computed in LOGSPACE in M .

Proof. The algorithm can be reorganized by allocating $\lceil \log(|M| + 1) \rceil$ bits per (a) atoms in $conj_M^*$, (b) atoms in $conj_A^*$, and (c) variables in $conj_A$. Storing these bits requires at most logarithmic space in $|M|$.

The algorithm then enumerates for every atom (or variable) all the possible assertions in M (values in \mathbf{I}^M) and tries the assignment that replaces the atom with the assertion (value).

This exhausts all the options to match assertions from M in lines 7-10 and 12-15 and values from \mathbf{I}^M in lines 17-20. Whenever all the options have been tried the variable can be replaced with a fresh constant.

For every such replacement, the algorithm has to solve an instance sat of satisfiability without the unique name assumption. By Lemma 9 sat is then converted to a “normal” satisfiability with the same M and \mathcal{S} that is polynomial at most in $\mathbf{I}^{K'}$ and \mathbf{I}^B . The latter satisfiability is first-order reducible. Thus, the entire algorithm requires logarithmic space in M . \square

Proof. The proof for the LOGSPACE data complexity follows from the above proof for lemma 11. The combined complexity follows from the complexity of satisfiability over DL-Lite^F core-closed KBs under the \mathcal{A} -noUNA assumption. \square

Proof of Theorem 6

Proof. Follows from Theorem 5. \square

S.4 Proofs of Section 8

Proof of Theorem 7

Proof. This follows from the respective complexity of query entailment and query satisfiability. \square