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Abstract

Infrastructure in the cloud is deployed through configuration
files, which specify the resources to be created, their settings,
and their connectivity. We aim to model infrastructure before
deployment and reason about it so that potential vulnerabili-
ties can be discovered and security best practices enforced.
Description logics are a good match for such modeling ef-
forts and allow for a succinct and natural description of cloud
infrastructure. Their open-world assumption allows captur-
ing the distributed nature of the cloud, where a newly de-
ployed infrastructure could connect to pre-existing resources
not necessarily owned by the same user. However, parts of
the infrastructure that are fully known need closed-world rea-
soning, calling for the usage of expressive formalisms, which
increase the computational complexity of reasoning.

Here, we suggest an extension of DL-Lite” that is tailored for
capturing such cloud infrastructure. Our logic allows com-
bining a core part that is completely defined (closed-world)
and interacts with a partially known environment (open-
world). We show that this extension preserves the first-order
rewritability of DL-Lite” for knowledge-base satisfiability
and conjunctive query answering.

Security properties combine universal and existential reason-
ing about infrastructure. Thus, we also consider the prob-
lem of conjunctive query satisfiability and show that it can be
solved in logarithmic space in data complexity.

1 Introduction

Complex cloud infrastructure is managed through code files
that are compiled into atomic deployment instructions as
part of a process known as Infrastructure as Code, IaC.
As of 2021, known IaC frameworks include AWS Cloud-
Formation, Terraform, Microsoft Azure Resource Manager,
Google Cloud Deployment Manager, Chef, and Puppet, to
name a few. Unfortunately, though, the same features that
make IaC a convenient and powerful deployment tool—
reusability, modularity, and shareability—also threaten the
security of the cloud. IaC files are often recycled and com-
bined, with little consideration of whether the original busi-
ness context and security requirements apply to the new us-
age scenario. The security vulnerabilities arising from such
a practice are subtle and widespread and need to be detected
early, at the level of configuration files, before potentially-
vulnerable infrastructure is deployed.

For such reasons, we research the application of knowl-
edge representation formalisms to the modeling and reason-
ing of IaC files and work towards a comprehensive frame-
work that fits into the scene set by existing tools (such as
static analysis, linters, and rule-based recommendation sys-
tems) to secure cloud infrastructure pre-deployment. De-
scription logics are a good match for such modeling ef-
forts. They allow us to succinctly and unambiguously de-
scribe cloud infrastructures, and to leverage decidable rea-
soning services, often implemented in efficient off-the-shelf
engines, when reasoning about their security.

By the distributed nature of the cloud, users can config-
ure their infrastructure to connect to resources that are run-
ning elsewhere but not declared in their accounts. This hap-
pens frequently; for instance, when users have permission
to perform operations on resources that they do not own,
such as write or read permissions on a shared storage in-
stance. As a consequence, laC files may combine objects
for which we have full knowledge, as declared in the con-
figuration file, with objects for which we only have par-
tial knowledge, as referenced by the configuration file. Al-
though the structural specifications are known for both types
of resources, the actual configuration of objects that are not
declared in the IaC file is not known. Is the shared stor-
age encrypted? lIs it accessible through a web server? Is
it publicly readable or writable? To answer these ques-
tions, we need to combine closed- and open-world rea-
soning in a way that enables verification and refutation of
queries representing potential vulnerabilities. In previous
work (Cauli et al. 2021a), we introduced the idea of us-
ing DL-based reasoning techniques for cloud infrastructure
security, and used the expressive ALCOZQ to model and
reason about AWS CloudFormation, Amazon Web Services
proprietary IaC framework. We simulated closed-world rea-
soning on selected nodes using the rich constructors avail-
able in ALCOZQ, such as nominals, universal restrictions,
and counting quantifiers. However, reasoning about se-
curity using this logic was not efficient, as basic services
like satisfiability are NEXPTIME-complete (Tobies 1999;
Baader et al. 2017) and the encoding of vulnerability queries
turned out to be non-trivial for users that are not versed in
description logic. This work highlighted the need for a for-
malism that scales to the size of cloud deployments, offers
a more transparent and straightforward modeling language,



and does not require cumbersome specifications of security
properties to catch the desired interpretation.

In this paper, we instead introduce a lightweight descrip-
tion logic that is tailored to model cloud infrastructure, at the
same time ensuring tractable reasoning. We extend the pop-
ular DL-Lite” with specification predicates whose interpre-
tation is closed over a core part of the knowledge base (KB)
but open elsewhere. We call such KBs core-closed knowl-
edge bases. We show that this specific way of combining
open and closed interpretations of the same predicates does
not incur complexity penalties. Indeed, we show that satisfi-
ability and query entailment over core-closed KBs are first-
order reducible. To reason about mitigations and vulnerabil-
ities to security threats, and in analogy to the terminology
used for 3-valued reasoning in the model-checking com-
munity, we introduce MUST and MAY conjunctive queries
and devise a simple logical language for the specification of
such properties. Technically, properties that must hold are
resolved via query entailment and properties that may hold
are resolved via query satisfiability. We show that comput-
ing whether a tuple ¢ is a sat-answer of a given query can be
solved in logarithmic space in the core portion of the KB.

The paper is structured as follows. In Sec. 2 we motivate
the choices made in the contributions put forth by this paper.
In Sec. 3 we review the background on DL-Lite” and con-
junctive queries. In Sec. 4 and 5 we introduce core-closed
KBs and study KB satisfiability. In Sec. 6 and 7 we discuss
conjunctive query entailment and satisfiability. In Sec. 8 we
present our security queries. We then discuss related work
(Sec. 9) and conclude in Sec. 10. Results and proofs that are
omitted in this paper are found in the full version.

2 Motivation

In this section, we emphasize how the application of descrip-
tion logic to cloud security drives the two main contributions
of this paper: core-closed KBs and MUST/MAY queries.

IaC Modeling In the Infrastructure as Code paradigm, the
creation of resources is managed through configuration files
that declare types and settings of the resource instances to be
created, and are automatically compiled into atomic deploy-
ment instructions. Configuration files must validate against
specification files, supplied by the cloud provider to describe
how each type of resource can be declared and configured.
In addition to the usual TBox and ABox, we introduce here
two dedicated sets of assertions and axioms, denoted as M
and S respectively, and use them to encode resources config-
uration and specification according to the IaC paradigm. The
following is an example of how these could be used to model
the structural specification of the resource type Bucket (S)
and the actual configuration of an instance called “data”
(M); and how these relate to the higher-level concept of
Storage (7)), which could further have external entities (A).

S = { JlogsStore C Bucket, JlogsStore™ C Bucket }
M = { Bucket(data), logsStore(data, logs) }

T = { Bucket C Storage }

A = { Storage(externalStorage) }

Resources that are declared in an [aC configuration file are
in the process of being deployed but do not yet exist. We
informally call these the template resources. These form
an infrastructure that can be connected to other external
resources—not declared in the current deployment template
but already running elsewhere. We call these the boundary
resources, as they lie at the boundaries of the known core in-
frastructure. In the example above, dara is a template node
and logs is a boundary node. Boundary and external nodes
are not part of our deployment. We may not own these cloud
resources and have no knowledge of their configuration, but
still, have permission to use them. However, we do know
that these must have some configuration that conforms to
the specifications too; therefore, we adopt an open-world
assumption when it comes to boundary resources configu-
ration w.r.t. the general system specifications. In contrast,
we assume to have complete information about the config-
uration of our template resources w.r.t. the specifications
and, thus, apply closed-world reasoning over these. In our
example, where logs is a boundary node, although we do
not own its configuration we certainly know that it must be
a bucket and that it may have a logsStore property config-
ured. Regarding the data object, which is a template node,
we exclude the possibility of it being involved in additional
relations (such as being the source or target of a logsStore
property). In fact, had there been any further properties they
would have been declared, and since this resource instance
does not yet exist it cannot be pointed to by any node that is
external to the current deployment. We call the pair (S, M)
the core of our system, and refer to the richer KBs described
above as core-closed KBs.

Querying for Vulnerabilities and Mitigations In secu-
rity, we seek query languages to express that mitigations to
security threats must be present (vs. may be absent) and vul-
nerabilities may be present (vs. must be absent). Such a
requirement calls for efficient decision procedures for query
satisfiability, in addition to query entailment. In our usage
scenario, Boolean combinations of so-called MUST/MAY
queries serve that purpose. We define MUST/MAY queries
by nesting regular conjunctive queries within the scope of a
MUST or MAY operator and resolve these via query entail-
ment and query satisfiability, respectively.

This implementation allows us, for example, to query for
potentially vulnerable instances such as “Buckets that may
store their own logs”, encoded as

qv[x] = MAY logsStore(z, x),

and to query for instances where mitigations to security
threats are in place such as “Buckets that must be server-
side encrypted”, expressed as

gm[z] = MUST ( Jy,z. encrypt(zx, y) A sseConfig(y, z) ).

In addition, through Boolean combinations of MUST/MAY
queries we combine multiple properties into one single
check; e.g., the following query witnessing the breach of the
mitigation “Buckets that may store logs must be encrypted”:
q[z] = MUST Bucket(x) A MAY ( Jy. logsStore(y, x) )

A —MUST ( Jy,z. encrypt(x, y) A sseConfig(y, z) ).



We note that the combination of core closed-world reason-
ing and MUST/MAY queries enables a very precise frame-
work for the verification and refutation of security proper-
ties. Importantly, such precision allows us to reduce the
rate of false-positive results that would clutter the quality
of the findings presented to users and security engineers.
For instance, the set of answers to the vulnerability query g,
over the sample model introduced in the previous paragraph
would contain the logs node but would not contain the data
node. The data bucket is already known to store its logs in
a distinct bucket and is assumed to not have any more prop-
erties. The logs bucket, instead, belongs to the universe of
external underspecified resources, for which it is not known
whether it stores any logs (and where), and might actually
store logs on itself—a fact that is worth spotlighting while
assessing the security of IaC deployments. As can be seen
in the extended version of our previous work (Cauli et al.
2021b), the examples discussed here are very close to real
IaC deployments’ encoding and to the properties that are of
interest for a security review.

3 Background

Here, we review DL-Lite” and CQs, which provide the basis
for the contributions made throughout the paper.

Let C, R, and I be countably infinite sets of concept
names, role names, and individual names. A DL-Lite” con-
cept B is built according to the syntax B ::= 1 | A | 3P,
where A is a concept name from the set C and P is a role
name R, or its inverse R™, from the set R. A TBox 7 is
a collection of positive inclusion axioms B; T B, nega-
tive inclusion axioms B; T —B,, and functionality axioms
Funct P. An ABox A is a collection of concept and role
assertions, both positive and negative, of the form A(a),
-A(a), R(a,b), and —R(a,b), with a,b individual names
from the set I. A DL-Lite” knowledge base (KB) K is
the pair (7,.A). The semantics of a DL-Lite” KB is given
in terms of interpretations. An interpretation is the tuple
T = (AT,.T), where AT is a non-empty domain and -Z is
an interpretation function. The function - assigns to every
concept name A a set A” subset of AZ, to every role name R
a set RZ subset of A7 x AZ, and to every individual name a
a domain element a” form the set AZ. We adopt the unique
name assumption (UNA), which requires that a* # b’ for
individual names a # b. The interpretation function is ex-
tended to concepts and roles as follows.

1F=9 (-Bf=ATB*
(R7)* ={(a,b) | (b,a) € R"}
(AP ={a|3Ib e AT.(a,b) € P}

An interpretation Z is a model of IC iff for all «in 7 U.A we
have Z |= «. The KB K is said to be satisfiable when there
exists at least one model. We write K = o whenever Z = «
for all models Z of K.

A conjunctive query (CQ) is an existentially-quantified
formula ¢[Z] of the form 3y.conj(Z, i), where conj is a con-
junction of positive atoms and potentially inequalities. A
union of conjunctive queries (UCQ) is a disjunction of CQs.
The variables in & are called answer variables, those in

are the existentially-quantified query variables. A tuple ¢ of
constants appearing in K is an answer to ¢ if for all interpre-
tations Z model of K we have Z = ¢[c]. We call these tuples
the certain answers of g over K, denoted ans(K, g), and the
problem of testing whether a tuple is a certain answer query
entailment. A tuple ¢ of constants appearing in K satisfies
q if there exists an interpretation Z model of C such that
7 [ q|c]. We call these tuples the sat answers of g over K,
denoted sat—ans(K, ¢), and the problem of testing whether
a given tuple is a sat answer query satisfiability. In the rest of
the paper, we consider inequalities only in the case of query
satisfiability and not in the case of query entailment.

4 DL-Lite” Core-closed KBs

In this section, we introduce the so-called “core-closed”
knowledge bases, their models, and their unique features.

A DL-Lite” core-closed KB is the tuple K =
(T, A, S, M), built from a standard KB (7, A) and a core
(S, M). As described in section 2, the set S contains DL-
Lite” axioms representing the core structural specifications
and the set M contains positive concept and role asser-
tions representing the core configuration. Syntactically, M
is similar to an ABox A but, differently from A, it is as-
sumed to be complete with respect to the specifications S.
As usual, (7, A) encodes the incomplete terminological and
assertional knowledge that, in our setting, may refer to both
the (closed) core and the surrounding (open) world.

The core-closed KB [ is defined over the sets of con-
cept names C, role names R, and individual names I. The
set of concepts is partitioned into specification concepts C°
and open concepts C*. The set of roles is partitioned into
specification roles RS and open roles R*. The set of indi-
viduals is partitioned into the core individuals I and the
open individuals I*. We call CS and RS core-closed pred-
icates as their extension is closed over the core domain and
open otherwise. In contrast, we call C* and R* open pred-
icates. From now on, we denote symbols from the alphabet
X with the subscript X', and symbols from the alphabet
X with no subscript. We now define which assertions are
M-assertions, i.e., fall into the scope of M; and which as-
sertions are .A-assertions, i.e., fall into the scope of .A.

M C{As(am), Rs(anm,an), Rs(anr,ax), Rs(ax,ar) }

A C { Ax(a), Re(a,b), As(ax), Rs(ax,bx) }

We assume M to be complete and consistent w.r.t. S, and
interpret as false all M-assertions missing from M. The
usual open-world assumption is made over 4-assertions.

For convenience, we sometimes consider the set of open
individuals I as further partitioned into a set of boundary
elements I”, which appear in M, and a set of free elements
IX', which appear only in .A. With this notation in mind,
we introduce the active domain of constants appearing in
M, denoted adom(M) and defined as the set IM 15,
We adopt the standard name assumption over individuals in
adom(M) and the unique name assumption over individ-
uals in IX". In section 7, we will refer to this assumption
as core standard name assumption. Such an assumption
reflects the knowledge that we have of the system that we



aim at modeling. According to it, the nodes declared in the
(known) core part of the infrastructure simply coincide with
their interpretation domain; but the nodes belonging to the
(unknown) surrounding part of the infrastructure need to be
mapped to the domain. All these elements are distinct.
Accordmg to the DL-Lite” syntax, axioms are built from
concepts B ::= BS | BX, with B ©:= 1 | Ax | 3Pk and
BS n= 1 | Ag | 3Ps, where P, called basic role, is either
an atomic role R or its inverse R™ from the set R. Axioms in
S (S-axioms) refer only to core-closed predicates; whereas
T-axioms can refer both to core-closed predicates (on the
left-hand side of concept inclusions) and to open predicates:

S C{BYLCBY, B C-BS, Func(Ps) }
T C {B,CBY, B;C-BY, Func(Px) }

The semantics of a DL-Lite” core-closed KB is given in
terms of interpretations Z, consisting of a non-empty domain
AT and an interpretation function -Z. The latter assigns to
each concept A a subset AZ of AZ, to each role R a sub-
set RT of AT x AZ, and to each individual ¢ a node aZ in
AT, An interpretation Z is a model of an inclusion axiom
Bi C B, if Bf C BZ. An interpretation Z is a model of a
membership assertion A(a), (resp. R(a, b)) if aZ € AT (resp.
(aT,bT) € RT). We say that Z models 7, S, and A if it
models all axioms or assertions contained therein. We say
that Z models M, denoted 7 |:CWA M, when it models an
M-assertion f if and only if f € M. Finally, Z models K if
itmodels 7, S, A, and M. If I has at least one model, then
K is satisfiable.

The notion of FOL-reducibility captures the property that
we can reduce satisfiability and query answering over a core-
closed KB to evaluating a first-order logic query over .A and
M considered as minimal models. In particular, we consider
the following interpretations of A and M: the database in-
terpretation of A, denoted db(.A), and the labeled transition
system interpretation of M, denoted lts(M).

Given an ABox A, with adom(A) its active do-
main of constants, we denote by db(.A) the interpretation
(A9(A) .db(A)) that is defined as follows:

db A)

(
a®A) = ¢, for each constant a appearing in A
(
(

AP — 4| A(a)c A} foreach AcC
R®A) — { (a,b) | R(a,b) € A } for each RER.

For an MBox M, we denote by lts(M) the interpretation
(Alts(M) 1ts(M)) that is defined similarly as above with
one notable exception: the interpretation of concept and role
names is computed only for those concepts and roles that fall
within the scope of M, that is, core-closed predicates cs
and RS. It is easy to see that db(A) |= A, and, precisely,
it is the minimal model of A. Similarly, lts(M) |:CWA M,
and, in particular, it is the unique model of M.

We consider various reasoning problems over core-closed
KBs and study their combined and data complexity (Vardi
1982). We measure data complexity in terms of the model
M, which we expect to be much larger than A.

5 Core-closed KB Satisfiability

As per standard DL-Lite” results, we now show that satisfi-
ability of core-closed KBs (i) can be reduced to consistency
of the functionality axioms and of the axioms in the nega-
tive closure of 7 and S, and (ii) it is FOL-reducible. Read-
ers familiar with the work of (Calvanese et al. 2007b) will
recognize the analogies between the two presentations.

As defined in the previous section, a DL-Lite” core-
closed KB K = (T, A,S, M) is satisfiable if and only
if there exists at least one interpretation Z such that Z =
TUAUS and T ="VA M. Let ga be a function that takes
as input a basic role P and two individuals a, b and returns
a membership assertion in the following way: ga(P, a,b) =
R(a,b) if P=R, and ga(P, a,b) = R(b,a) if P=R~.

Canonical Interpretation The canonical interpretation of
a core-closed KB [C is constructed according to the notion of
boundary chase, or bchase. The bchase is built by exploiting
the applicable positive inclusion axioms in the sets 7 and S.

Definition 1 (Applicable Axioms). Let X' be a set of M-

assertions, ) be a set of A-assertions, and Pl and Plg

be the positive inclusion axioms in T and S, respectively.

Then, an axiom o« € PI1 W Plg is said to be applicable in

Y to an assertion f € Y W X if:

cl a=ACAx, f=A(a), andAx(a) ¢y

¢2 =3P C Ax, f=ga(P,a,b), and Ax(a) ¢ Y

¢3 a=A C 3Pk, f=A(a), and there is no b such that
ga(PKa a, b) € y

¢4 =3P C 3Pk, f=ga(P,a,b), and there is no c such
that ga(Px,a,c) €Y

¢S5 a=As C Aig, fA:Ag(a;g), and Ag(a;c) §§ Yy

c6 a=3Ps C Ag, f:ga(PS, ar, b), and AS(CL}C) ¢ y

¢7 a=As C IPs, fa=As(ax), and there is no apq s.t.
ga(Ps, ax,anr) €X and no cx s.t. ga(Ps,axc,cc) €Y

8 a =3P C IPs, f=ga(Ps,ax,b), and for no ap,
ga(Ps, ax,ar) € X and for no cx, ga(Ps, ax, cx) €Y

Starting with )y = A and X = M (that is, starting with

the contents of A and M), axioms are incrementally applied

to assertions. At each ¢-th step, an axiom « is applied to an

assertion f in ); U X and a new membership assertion is

added to YV; 1. Following such step, « is not applicable in

Yj1 to the assertion f anymore. Depending on the order of

application, syntactically different sets of assertions could

be generated. To account for this, from now on we assume

the existence of an infinite ordered set of fresh symbols I,

from which we draw fresh individuals, and apply assertions

following a preset order.

Definition 2 (Boundary Chase). Let K = (T, A, S, M) be

a DL-Lite” core-closed KB, PIr the positive inclusion ax-

ioms in T, Pls the positive inclusion axioms in S, and 1T

a set of fresh individuals. Then, the boundary chase of K,

denoted bchase(IC), is defined as:

bchase(K, X) U Y;
jeN

where X = M, Yo =A, and Y11 =Y; U {fnew}, where
frew depends on the rule being applied:



let f be the first assertion s.t. there is « applicable in Y; to f
let o be the first applicable axiom
let a,,.,, be the next available constant in the ordered set It
switch < f,a >

case cl: fpew = Ax(a)

case c2: fnew = Ax(a)

case c3: frew = ga(Pr,a, anew)

case c4: fnew = ga(P/C7 a, anew)

case ¢5: frew = Ag(ax)

case c6: fpe, = As(ax)

case c7: fnew = ga(PSa ac, anew)

case c8: fnew = ga(P87 arc, anew)

As customary, we note that (i) negative inclusion and
functionality axioms play no role in the construction of the
bchase, and that (ii) this notion of bchase is fair, that is,
all applicable axioms will eventually be applied, as for-
malized by the following statements. Let bchase; be the
bchase built at the 7—th rule application. Then, if there is
an ¢ € N s.t. axiom « is applicable in bchase;(KC,X) to
an assertion f € bchase;(KC, X), then there is a j > i s.t.
bechase;11(KC, X) = bchase; (K, X)U{f’}, where f'is the
result of applying « to f in behase; (IC, X).

Moreover, as clear from definitions 1 and 2, we have that
an axiom is applicable to an M-assertion only when a fresh
assertion about a “boundary” individual ax can be added
to the chase. However, only A-assertions are included in
the bchase itself, and the procedure of adding fresh asser-
tions only generates .A-assertions and never generates M-
assertions. We formalize this in the following lemma.

Lemma 1. Let K = (T, A,S, M) be a DL-Lite” core-
closed KB, let i be an index in N, and let bchase;(KC, M)
be K’s i-th boundary chase. Then, bchase; (K, M) does not
contain M-assertions.

We are now ready to define the notion of canonical inter-
pretation of a core-closed KB.

Definition 3 (Canonical Interpretation). The canonical in-
terpretation of a core-closed KB K, denoted as can(K), is
the interpretation can(K) = (A°m() .can(K)y yhere:
Acan()C) _ I./\/l W IIC WwIt
a®™®) = o fora € adom(M) U behase(K, M)
A& — L4 | Ax(a) € behase(K, M)}
Ricc ™) = {(a,b) | Ric(a,b) € bchase(K, M)}
Asem®) = Ay (o | As(a) € behase(K, M)}
Rscan(IC)

We refer to the canonical model built with the ¢-th bchase
as can; (K) = (Acn®) .cani(K)) and note that AM*(M) C
Acan(K)’ Adb(A) c Acan(lC), and -ts(M) J.db(A) — cano(K)

Lemma 2. Let K = (T, A,S, M) be a DL-Lite” core-
closed KB, and let can(K) be its canonical interpretation.
Then, can(K) is a model of M.

Proof. We show that can(K) models an M-assertion f iff if
feM. The ‘if” direction follows from the fact that can(K)

= Rs"™* ™M) U {(a,b) | Rs(a,b) € bechase(K, M)}

contains /ts(M), which is a model of M and contains all
Me-assertions f such that f € M. The ‘only if’ direc-
tion follows from Lemma 1: in particular, can(K) is the
union of [ts(M) and bchase(K, M), and since bchase does
not contain M-assertions, then all M-assertions in can (k)
are inside [ts(M). Since lts(M) models M, then all M-
assertions f in can(K) are also in M. We conclude that
can(K) WA M. O

Lemma 3. Let K = (T, A, S, M) be a DL-Lite” core-
closed KB, let P11 be the positive inclusion axioms in T,
and let Plgs the positive inclusion axioms in S. Then,
can(K) is a model of (PIy, A, PIs, M).

As a consequence, every DL-Lite” core-closed KB with
only positive inclusion axioms in 7 and S (s.t. PIy =T
and PIs = §S) is always satisfiable, since one can always
build a can(K) that is a model of K. Regarding functionality
assertions, the following lemma applies.

Lemma 4. Let K = (T, A,S, M) be a DL-Lite” core-
closed KB, let F'r be the subset of functionality axioms in
T, and let Fs be the subset of functionality axioms in S.
Then can(K) is a model of (Fr, A, Fs, M) if and only if
db(A) U lts(M) is a model of (Fr, A, Fs, M).

NI-closure Let us now consider negative inclusion ax-
ioms. In particular, to establish a satisfaction relation be-
tween db(A) and [ts(M), on one side, and the NIs in /C, on
the other side, we need to consider the interaction between
the positive and the negative inclusion axioms that are con-
tained in KC. In the following, we materialize the interaction
between the PIs and NIs contained in 7 U S by computing
their negative inclusion closure, cln(T U S). We then show
that can(KC) is a model of such closure.

Definition 4. Let T be a DL-Lite” TBox, and let S be a DL-
Lite” SBox. We call NI-closure of T U S the set cin(T US)
of inclusion axioms defined inductively as follows:

1. AllNIsin TUS are in cln(T US);

2. AlFsinTUS areincn(T US);

3. IfBl CBy € (TUS), and By C —B3 (or B3 C —By)
€ cln(T US), then also By T B3 € cln(T US);

4. If either AP C =3P € cln(T US) or P~ C 3P~ €
cn(T US), then both are in cin(T U S).

This closure does not add negative inclusion axioms that
were not implied already by 7 U S.

Lemma 5. Let T U S be a set of DL-Lite” inclusion ax-
ioms, and let o be either a functionality axiom or a negative

inclusion axiom. Then, if cln(T US) = athen TUS = a.

We are now ready to show that, provided we have com-
puted the closure cin(7 U S), the analogous of Lemma 3
and Lemma 4 hold for NIs.

Lemma 6. Let K = (T, A S8, M) be a DL-Lite” core-
closed KB. Then, can(K) is a model of K if and only if the
union db(A) Ults(M) is a model of cin(TUS), A, and M.

Corollary 1. Let T U S be a set of DL-Lite” inclusion ax-
ioms, and o a functionality or negative inclusion axiom. We
have that, if T U S |= a then cln(T US) = .



FOL-reducibility

Lemma 7. Let K = (T, A,S, M) be a DL-Lite” core-
closed KB. Then can(K) is a model of K if and only if K
is satisfiable.

Since can(K) could be infinite, its construction is in gen-
eral neither convenient nor possible. However, the results
presented so far, especially Lemmas 6 and 7, allow us to
conclude that in order to check satisfiability of a DL-Lite”
core-closed KB K it is sufficient to compute cln(7 US) and
to look at db(A) U lts(M).

Theorem 1. Let K = (T, A, S, M) be a DL-Lite” core-
closed KB. Then K is satisfiable if and only if db(A) U
lts(M) is a model of cln(T U S), A, and M.

Proof.= K is satisfiable. From Lemma 7, it follows that
can(K) is a model of . From Lemma 6, it follows that
db(A) U lts(M) is a model of cln(T U S), A, and M.

< If db(A) Ults(M) is a model of cin(T US), A, and M,
then, from Lemma 6, can(K) is a model of K, and, from
Lemma 7, K is satisfiable. O

Verifying that db(A) U lts(M) models cln(T U S), A,
and M, can now be done by writing a Boolean FOL query
over db(A)Ults(M) itself. We use the following translation
function § from axioms in cln(7 U S) to FOL formulas:

d(funcR) = 3z, y,2z.R(z,y) AR(z,2) Ny # 2
d(funcR™) = Jx,y,2.R(y,z) AR(z,2) Ay # 2
0(B1 C =B3) = Fzy1(x) Avya(z)

where B; is a DL-Lite” complex concept, and in the last
equation we have: v;(x) = A;(z) if B; = A;; yi(z) =
B; = JR; . Intuitively, such formulas detect inconsistencies
that would make db(A) U l¢s(M) not model the axioms in
the NI-closure.

To summarize, to decide satisfiability of a DL-Lite” core-
closed KB K we need to: (1) compute db(A) and lts(M);
(2) compute cln(T US); and (3) compute the Boolean FOL
formula ¢, 54+ as the union of all Boolean formulas returned
by the application of ¢ to every axiom in cln(7T U S). We
show how this is done in Algorithm 1.

Algorithm 1: The algorithm Consistent
Inputs : £ = (T, A, S, M)
Output: true if IC is satisfiable, false otherwise

1 def Consistent (K):

2 Qunsat = L3

3 | foreacha € cin(T US) do

4 L Qunsat **= Qunsat V 5(04);

if db(A)Ults(M)

unsat
6 L return true;

= () then

7 return false;

Lemma 8. Let K = (T, A, 8, M) be a DL-Lite” core-
closed KB. Then, the algorithm Consistent(C) terminates,
and K is satisfiable iff Consistent(IC) returns true.

Proof. Termination follows from the fact that cln(7 US) is
a finite set. The query gy, sq¢ verifies whether there is an ax-
iom « in the NI-closure that is violated in db(A) U lts(M).
The algorithm returns true only when such an axiom does
not exists, therefore, db(A) Ults(M) is a model of all asser-
tions in cln(7 US), and, by Theorem 1, K is satisfiable. [

As a consequence of Lemma 8, we get:

Corollary 2. Satisfiability of a DL-Lite” core-closed KB is
FOL reducible.

6 CQ Entailment

In this section, we discuss entailment of a conjunctive query
q over a core-closed KB K and computation of the cer-
tain answers ans(q, ). Let us recall that, for the en-
tailment problem, we are interested in queries that do not
contain inequalities. By the construction of K’s canonical
model can(KC) presented in the previous section, it is easy
to see that the preliminary properties that hold for DL-Lite”
KBs (Calvanese et al. 2007b) also hold for DL-Lite” core-
closed KBs. In particular, we have that (i) there exists an
isomorphism from X’s canonical model to every model of
KC and (ii) the answers to a CQ over K correspond to the
answers to the query over can(KC). Based on these results
, we solve entailment of a CQ ¢ over a core-closed KB K
via query reformulation. The query is reformulated based
on the PI axioms in 7 U S and then evaluated over db(.A)
U lts(M). Classically, the algorithm PerfectRef takes in
input a CQ ¢ and returns a collection of fresh C'Qs that re-
formulate ¢ by internalizing positive inclusion axioms and
reducing atoms that can be unified (Calvanese et al. 2007b).
We apply PerfectRef as is and, hence, omit its description
from the presentation. We report the CAns procedure in al-
gorithm 2 and state its correctness by the following theorem.

Theorem 2. Let K = (T, A, S, M) be a DL-Lite” core-
closed KB, let q be a conjunctive query, and t a tuple of
constants in K. Then t € ans(q, K) ifft € CAns(q, K).

As a result of the tight correspondence between the
standard and the core-closed setting w.rt.  canonical
model construction and query reformulation, we have that
ans(q,K) = CAns(q,K) and that, hence, answering con-
junctive queries in core-closed DL-Lite” KBs is FOL-
reducible. In addition, due to such correspondence, other
properties of conjunctive query answering over DL-Lite”
hold as well, e.g., it is also the case that there is a /IC with no
finite interpretation that answers a CQ, just like usual DL-
Lite” KBs (Calvanese et al. 2007b).

Theorem 3. Query entailment in DL-Lite” core-closed KBs
is ACY in data complexity and NP-complete in combined
complexity.



Algorithm 2: The algorithm CAns
Inputs : CQq, K = (T, A, S, M)
Output: ans(q,K)

1 def CAns (K,q):

2 if not Consistent(KC) then
3 | return AllTup(q,K)

4 | return PerfectRef(q, T U S)%(AVits(M),

7 CQ Satisfiability

We now discuss satisfiability of a conjunctive query with in-
equalities ¢ w.r.t a core-closed KB K and computation of the
sat answers sat-ans(q, KC). Let ¢ be the conjunctive query
q|Z] = 3y.conj(Z,y) where Z is the set of ¢’s answer vari-
ables and 3/ are the existentially-quantified variables. We call
a CQ-assertion a query q where the answer variables & have
been replaced by an assignment ¢ and define the problem of
CQ-assertion satisfiability as follows.

Definition 5 (CQ-assertion Satisfiability). An asserted con-
Junctive query with inequalities q[¢] = 3y.conj(C, ) is said
to be satisfiable w.rt. KK = (T, A, S, M) iff there exists an
interpretation T model of K such that T satisfies q|c].

To decide CQ-assertion satisfiability we require solving
satisfiability of a core-closed KB without the unique name
assumption, which we discuss in the following paragraph.

Core-Closed KB Satisfiability w/o UNA Let us drop the
unique name assumption on pairs of individuals that are
not covered by the core standard name assumption (cf. sec-
tion 4). Intuitively, these include all pairs referring to in-
dividuals not in M’s active domain plus all pairs where
exclusively one element can be a boundary node from 12,
The ABox A can now contain inequality assertions a; % ay,
where a; € IF and a; € IF. Pairs of individuals not
falling in this set definition, that is, pairs s.t. a; € I or
aj,ar € I, will still be assumed to be distinct by the core
SNA. For instance, a boundary node a; in 12 could corre-
spond to the same domain object as an external node aj, in
IX". We refer to this assumption as .4-noUNA.

Lemma 9. Let K = (T, A,8, M) be a DL-Lite” core-
closed KB with inequalities in A interpreted under A-

noUNA. Then, one can construct in polynomial time in I
and 1P a core-closed KB K' = (T", A',S, M) s.t. A’ con-
tains no inequalities and K is satisfiable iff K' is satisfiable.

Proof. We build 7’ and A’ by applying the following rules:

* if (func P)eTUS and {ga(P, @i, a;),ga(P,a;,ax)} CA
for a; # ay s.t. a; € 1 and a; € IX', then replace all
occurrences of aj, with a; in A.

* if (func P)€ TUS and {ga(P, a;,a;),ga(P,a;,axr)} C.A
for aj #ay, s.t. a; € M or aj, a), € I, or if A contains
a % a for some a, then the KB is not satisfiable and we
add Af(as) to Aand A/ C L to T for fresh concept A/
and constant a .

Lastly, we remove all inequalities and denote the sets as A’
and 7. For the rest of this proof, see the full version. O

Theorem 4. Under the A-noUNA assumption, satisfiabil-
ity of DL-Lite” core-closed KBs with inequalities is AC° in
data complexity and P-complete in combined complexity.

Solving CQ-assertion Satisfiability Consider a CQ-
assertion 3¢.conj(c, 7). From now on, for simplicity, let
us denote it as conj, which is treated as the set of atoms that
the query comprises. The set conj can be grounded by re-

placing variables i/ with constants d. The assignment d may
contain both constants from I and fresh constants. When
conj is grounded in d, denoted conj(d), all atoms become
assertions. Assertions C(c),r(c, '), réc, a),r(a,c), c % c,
c# a,a®c and bzl where Ce C°, reRS, ¢, €M,
bt €IP anda ¢ IM are called M-assertions. All other as-
sertions are called A-assertions. A grounded CQ-assertion

conyj ((f) is therefore partitioned into the two sets conj 4 and
conjam. The set conjag is the subset of conj containing M-
assertions. To distinguish the predicate assertions from the
inequality assertions we refer to its subsets as conjy, and
conjfél, respectively. The set conj 4 is the subset of conj
containing A-assertions. We add to this set the inequality
a st a for every distinct a € IX and o’ € IX'. We do this to
preserve these objects’ distinctness when invoking the satis-
fiability without UNA, according to the following lemma.

Lemma 10. An asserted conjunctive query with inequalities
ql[c] = 3y.conj(C, ) is satisfiable w.rt. K = (T, A,S, M)
iff there exists at least one assignment d for the variables in §

such that conj (¢, (f) does not include assertion x % x for ev-
ery constant x and is grounded in the sets conj 4 and conjam
such that conjy, CM and K' = (T, AW conja,S, M) is
satisfiable without the UNA.

We now show that finding (part of) the assignment

cz which induces the partition to conjarq and conj4 of
Lemma 10, can be done in log-space in M. We introduce
terminology and notation that will be helpful to understand
the reasoning behind Algorithm 3. The algorithm manipu-
lates a set of atoms. We refer to this set as conj even though
its composition changes between different stages of the run-
ning of the algorithm. Each atom in conj is either an asser-
tion, whose arguments are all constants, or an unassigned
atom, whose arguments contain some variables. In high-
level, conj contains five types of atoms that play a differ-
ent role in determining query satisfiability. These five types
are: A-assertions, M-assertions, A-atoms, M-atoms, and
atoms. We have already introduced the first two sets, conj 4
and conjag, and assumed that conj 4 enforces the unique
name assumption on IX and 1 by explicitly including ad-
ditional inequalities. The remaining three types of atoms are
defined as follows. (/) Unassigned atoms that refer to con-
cepts in CX and roles in R* are called A-atoms as they will
inevitably be replaced by A-assertions. We denote this set
as conj a2 and highlight that it does not contain inequali-
ties, but only concept/role atoms. (2) Unassigned atoms of
the form r(c,y), r(y,c), ¢ # y, or y % c where r € R®
and c € I, are called M-atoms as they will inevitably be



replaced by M-assertions. We denote this set as conjaz.
Differently from conj 42, conjaq? may contain inequalities.
Hence, we partition it into the subsets conj} 4, and con, j;ﬁ?.
(3) The remaining elements in conj are simply called atoms
as they might be replaced either by constants from I or
I, turning them into A-assertions or M-assertions, respec-
tively. We denote this subset of conj as conj» and partition
it into conjy and conjf.

Algorithm 3: Sat (IC,conj)
Inputs : Consistent K = (7, A, S, M), set conj
Output: true if conj is satisfiable w.r.t. K

1 def Sat (K,conj):

2 if (conj contains x5 x) or (conji, € M)

then
3 | return false;
4 conj 1= conj . conja;
5 if conj == () then
6 | return rrue;
7 if there is at < conj ., with free variable y
then
8 for a s.t. atla/y] € M do
if Sat(K,conjla/y]) then
10 | return true;
11 | return false;
12 if there is at <— conj; with free variables ij then
13 for d s.t. at[d/y] € M do
14 if Sat(KC, conjd/y]) then
15 L return true;
16 | return Sat(KC, conj[a? /7));

17 if there is at < conj a2 with free variable y then
18 for a € T do

19 if Sat(K, conja/y]) then

20 L L return true;

21 | return Sat(KC, conj[a /y]):

22 if there is at < conjf then

23 | return Sat(K, conj[a? /if]);

24 conj i= conj \ conjf/(?;

25 conjp i=conjaU{a#bl|abe

1P UTK Aa #b);

2 | return sat’, . (T, AUconja, S, M)

Algorithm Description The algorithm searches for an as-
signment that partitions conj into the sets conjaq and conj4
such that conjaq is consistent with (i.e., included in) M
and conj 4 is satisfiable w.r.t. ' when dropping the UNA.
Assignments are found by replacing variables with con-
stants in A-atoms, M-atoms, and atoms, which become
A-assertions or M-assertions; thus, populating the sets

conj 4 and conjrg. The algorithm starts with a set conj that
may contain all types of assertions (i.e., conj C conjay U
conjie, U conjja? U conji U conj? U conj a2 U conja).
At each recursive invocation of Algorithm 3 with the cur-
rently handled set of atoms conj, we have that conj is cer-
tainly unsatisfiable if: (i) it contains any inequality asser-
tions referring to the same pair of symbols or (2) it contains
any concept/role M-assertions that are not in M (lines 2-
3). Hence, when the code execution continues to line 4, all

the M-assertions conj}, do not affect satisfiability and all

the M-inequalities conjf\é/l are simply true by the underly-

ing core SNA. These assertions can then be disregarded (line
4). If, after removing these, conj is empty, then it is surely
satisfiable (lines 5-6). Otherwise, conj may still contain
M-atoms, A-atoms, atoms, and A-assertions (i.e., conj C
conjirg, U conjfél? U conjs U conjr_,% U conjar U conja).
We prioritize the replacement of atoms that must be mapped
to assertions in M, and try all of these during replacement
of both M-atoms and atoms (lines 8-10 and 13-15). For
concept/role M-atoms in conj},, we try all replacements
from M. If we find an atom from conj},, that cannot be
instantiated with an assertion in M leading to satisfiabil-
ity of the replaced query, then conj is surely unsatisfiable
(line 11). Otherwise, it is satisfiable (line 10). Similarly,
for concept/role atoms in conj;, we first try all the replace-
ments in M (lines 13-15); if none of these replacements
makes conj satisfiable, then we try by replacing variables
with fresh constants (line 16), turning the generic atom into
an A-assertion. For concept/role A-atoms in conj 42, we
first try all the replacements in I (lines 18-20); if none of
these replacements makes conj satisfiable, then we try by re-
placing variables with fresh constants (line 21) Notice that in
both cases the A-atom becomes an A-assertion. When the
algorithm progresses to line 22, conj may still contain in-
equality atoms, inequality M-atoms, and A-assertions (i.e.,
conj C conjr_?é U conjfét? U conj 4). We assign the inequal-
ity atoms by replacing variables with fresh constants (lines
22-23) and disregard the inequalities in the set conjf(?, as
they must be true by the core SNA (line 24). If a recursive
call reaches line 25, then only A-assertions are left in conj
(i.e., conj = conj_4). In line 25, we enforce the uniqueness
of the pre-existing nodes in I? and IX" and, finally, invoke

the sat’ j,» algorithm (line 26).

Correctness

Theorem 5. Let K = (T, A, S, M) be a DL-Lite” core-
closed KB, q a conjunctive query, and C a tuple of con-
stants in K. Then, q|c] is satisfiable w.r.t to K if and only
if Sat(IC, q[c]) returns true.

Corollary 3. Query satisfiability in DL-Lite” core-closed
KBs is decided in LOGSPACE in data complexity and is P-
complete in combined complexity.

We leave open the question of whether query satisfiabil-
ity is in AC” in data complexity. In algorithm 4, we re-
port the procedure that given a query q computes the set
sat-ans(q, K) w.rt. a core-closed KB K. We now state the
correctness of the algorithm.



Theorem 6. Let K = (T, A, S, M) be a DL-Lite” core-
closed KB, q a CQ with inequalities over K, and t a tuple of
constants in K. Then, t € sat-ans(q, K) iff t € SAns(q, K).

Algorithm 4: The algorithm SAns
Inputs : CQq, K = (7, A,8, M)
Output: sat-ans(q,K)

1 def SAns (K,q):

2 | if not Consistent(K) then
3 | return ()

4 return
{Z| e AllTup(q,K) A Sat(K, ¢[d]) =t }:

8 MUST/MAY Queries

As introduced in section 2, we are interested in Boolean
combinations of MUST/MAY queries. Such a Boolean com-
bination is a query v that combines nested UCQs in the
scope of a MUST or a MAY operator as follows:

Y= | 1 Ae | 1 Vaba | MUST @ | MAY g

where ¢, are unions of conjunctive queries potentially
containing inequalities. Note that we do not allow nest-
ing of MUST/MAY atoms within ) as we believe it would
not increase its expressive power. Intuitively, the reason-
ing needed for answering the nested queries can be decou-
pled from the reasoning needed to answer the higher-level
Boolean combination. In particular, the set of answers to
the query v over a core-closed KB K = (T,A4,S, M)
with individual names I, denoted as ANS(%), K), is com-
puted as follows. Each nested query MUST ¢[Z] with ¢ the
union of conjunctive queries \/, ¢; is resolved by comput-
ing the set J, ans(q;, ) as |J; CAns(q, ). Each nested
query MAY ¢[Z] with ¢ the union of conjunctive queries
with inequalities \/; ¢; is resolved by computing the set
\U; sat—ans(q;, K) as |J; SAns(q, K). Connectives —, A, V
are resolved by set complementation w.r.t. I, intersection,
and union, respectively.

Theorem 7. Answering whether a given tuple t satisfies a
MUST/MAY query over a core-closed DL-Lite” KBs can
be decided in LOGSPACE in data complexity and is NP-
complete in combined complexity.

9 Related Work

Many authors have advocated for combining open- and
closed-world reasoning in description logics, and proposed
a variety of ways to achieve it, e.g., (Baader and Hollunder
1995; Borgwardt and Forkel 2019; Franconi, Ibafez-Garcia,
and Seylan 2011; Gaggl, Rudolph, and Schweizer 2016).
One of the most prominent approaches is to extend DLs
with closed predicates (Franconi, Ibafiez-Garcia, and Sey-
lan 2011), that is, with a set of concepts and roles that are
viewed as complete and their extensions fixed in all models.
Our combination of open- and closed-world reasoning was
tailored specifically for this application domain, and it is not

obvious whether it can be easily expressed using the usual
closed predicates, due to the presence of predicates that are
closed over part of the domain but open on the rest.

One of the major challenges of extending DLs with closed
predicates is to keep the complexity in check. Closed pred-
icates can be simulated in expressive DLs with nominals
(like ALCO and its extensions), but for such logics satis-
fiability is at least ExpTime-hard (Baader et al. 2017) and
conjunctive query entailment 2ExpTime-hard (Ngo, Ortiz,
and Simkus 2016). Moreover, such an encoding is not use-
ful for obtaining improved bounds for the data complex-
ity. Unfortunately, query answering with closed predicates
is also intractable in data complexity, and the coNP lower
bound applies already to very restricted classes of conjunc-
tive queries (CQs) and very weak DLs like DL-Lite o, or EL£
(Lutz, Seylan, and Wolter 2019). Lutz, Seylan, and Wolter
(2013) showed that for most lightweight DLs conjunctive
query answering is FOL rewritable only under some safety
restrictions that make the presence of closed predicates ir-
relevant. Our core-closed KBs resemble their safe KBs and
are FOL rewritable, but the partial closed-world assumption
plays an important role, particularly in the query satisfiabil-
ity problem that arises from the MAY queries.

Semantic approaches to security are being studied (Hen-
dre and Joshi 2015; Brazhuk 2020) and will soon lead to
publicly available, community-maintained, threat modeling
ontologies. As an example, we refer the reader to the
“Ontology-driven Threat Modeling” incubator project by
OWASP (https://github.com/OWASP/OdTM) and reflect on
how this will impact the adoption of DL-based semantic rea-
soning techniques in threat modeling and security. We be-
lieve that our MUST/MAY queries could be used within a
first-order logic of knowledge/belief (Reiter 1992), as done
in (Calvanese et al. 2007a), but this was not in the scope of
the application presented in this paper.

10 Conclusion and Future Work

We introduce a variant of DL-Lite” that combines closed-
and open-world reasoning within the same predicates. Our
variant is tailored for the modeling of cloud infrastructure
and allows to reason about security issues that might arise in
such applications. We avoid the complexity price usually in-
volved in reasoning with closed predicates and show that we
keep the convenient complexity of DL-Lite” for KB satisfi-
ability and conjunctive query answering, and that conjunc-
tive query satisfiability is also tractable. We combine query
answering and satisfiability in a logic that includes must and
may queries over KBs, as required for testing security issues.

As future work, we are interested in including more com-
plex knowledge in the 7-box while still keeping (data) com-
plexity tractable. For example, complex role inclusions
would be required to reason about dataflow, which is a cen-
tral aspect of security. Also, to be able to reason about per-
missions, we would have to consider non-monotone exten-
sions. Practically, we are interested in logical languages that
would allow security engineers to pose security queries in
an intuitive and easy-to-use way.


https://github.com/OWASP/OdTM
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Supplementary Material
S.1 Proofs of Section 5
Proof of Lemma 1

Proof. By construction, bchase;(C,M) is built by adding
fresh assertions to the set );_; according to the rules in def-
inition 2. It is easy to see from the cases c¢1-c8 that none of
these fresh assertions is an M-assertion. O

Proof of Lemma 3

Proof. Since we have already shown that can(K) is a model
of M, we need to show three things: (1) can(K) satisfies all
assertions in A, (2) can(K) satisfies all positive axioms in
PIy, and (3) can(K) satisfies all positive axioms in Plg.
(1) follows from the fact that can(K) contains A. To prove
(2) and (3), we need to proceed by contradiction considering
all cases for axioms in Pl and PIgs and the fact that M is
assumed to be consistent w.r.t. S. The proof is similar to that
of Lemma 7 in (Calvanese et al. 2007b). In particular, let us
note that the rules c¢1-¢8, that are used in the construction of
the bchase, cover all cases of positive axioms in 7 U S. For
each of these cases, the rule is triggered when an assertion
that should be logically implied by another, according to the
implication established by the corresponding rule’s axiom,
is missing. Hence, for every axiom o = B; C Bo, it is pos-
sible to prove by contradiction that if an object a such that
Bi(a) € can(K) A Ba(a) ¢ can(K) exists, then the corre-
sponding rule would have been triggered, and the assertion
Ba(a) added to can(K), leading to a contradiction. While
the above statement is valid for all the nodes in I¥ it applies
to nodes in TM only for rules c1-c4. For rules ¢5-¢8, that do
not apply to objects aq € IM, we need to recall that M is
assumed to be consistent with respect to S. 0

Proof of Lemma 4

Proof.= We show that db(A)Ults(M) = (Fr, A, Fs, M)
if can(K) E (Fr, A, Fs, M). Since can(K) is built
from the union of {ts(M), which is the model of M, and
of the bchase(K, M), which contains A, it follows that if
a functionality axiom is satisfied by can(K) then it must
be satisfied by the union db(.A) U lts(M) of its compo-
nents’s minimal interpretations.

< We show that if db(A) Ults(M) = (Fr, A, Fs, M) then
can(K) = (Fr, A, Fs, M) . We proceed by induction
on the construction of the canonical model, when seen by
progressing through the construction of the chase.
Base Step. We have that cang(KC) = (A(K) | .cano(K))
where -¢am0(K) — .lts(M) j .db(A) and since by assump-
tion 15M) . d(A) = (Fr A, Fs, M) then cang(K) =
(FTaA7 FS7M)'
Inductive Step. Let us assume by contradiction that
there exists an i such that can;(K) is a model of
(Fr, A, Fs, M) but can;11(K) is not. According to this
assumption, there is an axiom « that when applied to an
assertion f € can;(K), following one of the rules cl-
8, violates a functionality assertion. The only rules that
add fresh role assertions, and that can therefore violate
functionality, are the rules ¢3, c4, ¢7, and ¢8. Let us

consider the cases ¢3 and c4. In both cases, we have
can;+1(K) = can;(K) U {ga(Px, a, anew)} Where aper
is a new constant symbol introduce according to the total
order in the set I'™. Since can;y1(K) is not a model of
(Fr, A, Fs, M), there must exist at least a functionality
axioms « that is not satisfied by can,11(K). However, all
three following cases lead to a contradiction:

- If @« = Func(Px), there must exists pairs (z,y) and

(x,z) of objects in P,cca"'i“('c) s.t. y # z. However,

since rule ¢3 or ¢4 was applied, then no other Py-
assertion departing from a was contained in can;(KC)
and only ga(Pi,a,aney) is added to can;i1(K).
Therefore, the functionality axiom must have been not
satisfied in can;(KC), which is a contradiction.

- If o« = Func(Py), there must exists pairs (y,z) and

(2, ) of objects in P,Cg"i“(’c) s.t. y # 2. Since apeqy iS

fresh in can;11(K), there could not have been another
pair (a’, Gpew) With a # o’ contained in can;(K) and
therefore this pair is also not in can;1(K). Therefore,
the functionality axiom must have been not satisfied in
can;(KC), which is a contradiction.

- If & = Func(P’) with P’ # Py, we would conclude
that the axiom is already not satisfied in can;(K), but
this would lead to a contradiction.

Let us now consider the rules ¢7 and ¢8. In both cases, we
have that can;;1(KC) = can;(K) U {ga(Ps, ax, tnew)}-
Similarly to the above, all three following cases lead to a
contradiction:

- If & = Func(Ps), then there must exists pairs (z,y)

and (z, z) of objects in peani+1(K) ¢ ¢ y # z. How-
ever, since rule ¢7 or ¢8 was applied, then no other Ps-
assertion departing from a,. was contained in can;(K)
(neither in X nor in Y). Therefore, the functionality
axiom must have been not satisfied in can,(K), which
is a contradiction.

- If o« = Func(Pg), there must exists pairs (y,z) and

(z,z) of objects in Pg‘m”l(’c) S.t. y # 2. SINCE Ay e

is fresh in can;y1(K), no other pair (a’, anew) With
a’ # ax could have been contained in can;(K) and,
therefore, is also not contained in can;y1(K). There-
fore, the functionality axiom must have been not satis-
fied in can;(K), which is a contradiction.

- If & = Func(P’) with P’ # Pg, we would conclude
that the axiom is already not satisfied in can;(KC), but
this would lead to a contradiction.

O
Proof of Lemma 5

Proof. The proof follows as, by construction, all assertions
in cln(T U S) are logically implied by 7 U S. O

Proof of Lemma 6

Proof.= We show that if can(K) is a model of K, then
db(A) U lts(M) is a model of cIn(T U S), A, and M.
Since can(K) models K and, by Lemma 5, all assertions
in cin(T U S) are logically implied by K, then can(K)



also models cln(7T U S). Let us recall that, for every
atomic concept A € C we have that A?(A) U Alts(M) —
Acano(K) C Acan(K) - and for every atomic role R € R
we have that R¥%(A) y RIEs(M) — Reano(K) ¢ Rean(K),
Since can(K) is a model of cIn(7 U S); since the re-
striction can(K) to cany(K) only affects extensions in the
bchse and does not affect extensions in lts(M); and since
the nature of functionality and negative inclusion axioms
is such that they cannot be contradicted by restricting
the bchase extension of atomic concepts and roles, then
we can conclude that db(A) U lts(M) is a model of
cdn(TUS).

We show that if db(A)Ults(M) is a model of cln(TUS),
A, and M, then can(K) is a model of K. To do so, we
need to prove that can(K) is a model of the functionality
and negative inclusion axioms in /C (since, by Lemma 3,
can(K) is always a model of the positive inclusion axioms
in /C, we do not need to include those in the proof). We
prove the latter statement by showing that can(K) is a
model of ¢in(T U S), A, and M. That is, we prove that
if db(A) U lts(M) is a model of cin(T U S), A, and M,
then can(KC) is a model of it too. We do so by induction
on the construction of the bchase(K).

Base Step. By construction, we have cang(K) =
(Acan(lC)’ .cang (IC)) where -€ano (IC) —_ (_lts(/\/l) U _db(A)).
Therefore, Acano(K) = Alts(M)jAdb(A) , for every atomic
concept A; and Re@0(K) — Rits(M) | RIb(A) for every
atomic role R. Given that by assumption db(A) U lts(M)
is a model of c¢ln(T U S), A, and M, it follows that
cang(K) is also a model for cin(T U S), A, and M.

Inductive Step. Let us assume by contradiction that
can;(K) is a model of cin(T U S), A, and M, and
can;+1(K) is not. Let us recall that can;1(K) is ob-
tained from its predecessor by applying one of the bchase
rules c1-¢8. In the following, we use the symbol B to
refer to a complex DL-Lite” concept, that is, a concept
B = A or B = JP. A rule is executed because a PI axiom
B; C By = A; C By (resp. = JP C By) is applicable to
an assertion A (a) (resp. ga(P,a,b)) in can;(K). As a
result of the rule’s application, we have that can; 11 (K) =
can; () U{Az(a)} if Ba = Az or cani+1(K) = can; (K)
U{ga(P’,a,b)} if By = 3P’. Since can;(K) is a model
of cln(T U S) and can;1(K) is not, there must exists a
negative inclusion axiom a € cln(7T U S) s.t. can;(K)
models a and can;1(K) does not model «. The axiom
« must be of the form By C —B3 or B3 C =By, while
can;+1(K) must contain an assertion As(a) if Bs = Ag,
or ga(P”,a,b) if B3 = JP”. If such axiom exists in
cln(T US), then the set cIn (7T US) must also contain the
result of its combination with By C By (the PI that trig-
gers the application of rule); that is, the axiom B; C —Bg3
must also be in cln(7 U S). If Ba # Bg, then the axiom
B; C —B3 would not be satisfied in can;(kC), which leads
to a contradiction. If B, = Bg, then B; C =By would not
be satisfied in can;(K), which also leads to a contradic-
tion.

O

Proof of Corollary 1

Proof. We first consider the case in which « is a NI axiom.
Let us assume by contradiction that T US = « and ¢ln (T U
S) = o. We now show that from the fact that cin(T US) =
« one can construct a model of 7 U S that does not satisfy
a, thus obtaining a contradiction.

Let us assume that « = A; £ —A,, and consider the
DL-Lite” KB K = (T, A, S, M) where M = () and A =
{A1(a),A2(a)}. We show that can(K) is the model that
we are looking for, that is, the model such that can(K) =
T US and can(K) (£ a. The fact that can(K) £ «
is clear from the content of .A. We proceed to prove that
can(K) |E T US. The only NIs that can be violated by
db(A) U lts(M) are A; T —Ag, its contrapositive form
Ay C —=Aq, A; C —-Aq, and Ay C —As. Since M is empty,
we concentrate on db(A). By assumption, we know that
cdn(T US) = A1 C —Az and, therefore, cin(T U S) [
A, T —A;. It follows that it cannot model neither the two
remaining axioms A; T —A;, and A, C —A,. Hence,
we can conclude that db(A) = cln(T U S) and therefore
db(A) = cln(T US) U AU M. From Lemma 6 it follows
that can(K) is a model of K. The same claim can be proven
for the cases where « has a different form.

We now consider the case in which « is a functionality
axiom. In a similar way, we assume by contradiction that
TUS = aand cdn(T US) = o We show that from
cln(T US) = a one can construct a model of 7 U S that
does not satisfy «, obtaining a contradiction. The proof is
similar to the one conducted for the case of NI, by using the
ABox A ={ga(P,a,b),ga(P,a,c)}. O

Proof of Lemma 7

Proof.= Follows from the definition of satisfiability for X
KB BSs. If can(K) is a model of I, then K is obviously
satisfiable.

< We prove this direction by contraposition. We show that

if can(KC) is not a model of K, then K is not satisfiable.
By Lemma 6, it follows that db(A) Ults(M) = (cin(T U
8), A, M), and therefore db(A) Ults(M) F~ cln(TUS).
This means that there exists a negative inclusion axiom «
such that db(A) U lts(M) = a and cn(T U S) [ a.
By Lemma 5, we have that 7 US | a. Let us as-
sume that « is of the form A; T —A,. Then, there ex-

ists @ € AAIES(M) gych that g € A;lb(A)ults(M) and

a € Agb(A)Ults(M). Let us now assume by contradiction

that KC is satisfiable and therefore there exists an interpre-
tation 7 = (A7 ,-7) that is a model of /C. We construct
an isomorphism 1) from AAUIES(M) 16 AT such that
¥(a) = a” for each constant occurring in A U M. Since
J is a model of A U M it satisfies all their membership
assertions, including 1)(a) € AY and ¢(a) € AY. How-
ever, this makes the NI A; © —A5 be violated also in 7,
contradicting the fact that 7 is a model of .

O

Proof of Corollary 2

Proof. Directly follows from Lemma 8. O



S.2 Proofs of Section 6
Proof of Theorem 2

Proof. Follows from the correctness of the corresponding
procedure Answer in the standard setting, cf. (Calvanese et
al. 2007b), when considered over a single CQ. In particular,
let us stress that core-closed KBs do not introduce any sig-
nificant difference with respect to the rewrite procedure and,
in general, with respect to CQ entailment. O

Proof of Theorem 3

Proof. Follows from the complexity of the standard set-
ting (Calvanese et al. 2007b) O

S.3 Proofs of Section 7

Proof of Lemma 9

Proof. We now prove that £ = (7, A, S, M) is satisfiable
under A — noUNA if and only if K’ = (T", A, S, M) is
satisfiable with the UNA.

« If K’ is satisfiable with the UNA, then all the KBs, includ-
ing /C, that are obtained from it by following a procedure
that is the inverse of the one presented above, are satisfi-
able under the A — noUNA.

= If K =(T,A,S, M) is satisfiable under the A — noUNA,
then there exists at least one model Z = (adom(M) &

IX wIt,.T), where IK" = IX <\ IZ, and a non-injective
function f : IB UTIK wIt — A" w AT WIT g
f . IB — AT’ that associates each constant from
the set of open individual names I* w It with an ele-

ment from AI” AIK/“JIJr, and each constant name I5
with a boundary domain node A" This function can,
thus, map open individuals onto boundary nodes. Since
7 is a model of IC, it satisfies all functional axioms in
7T US. In particular, we have that for all functionality
axioms o« = (FuncP) € T U S, and for all a,ax,q;
st. a; € (I~ adom(M)) and a, € (I~ IM), if
T = ga(P,a,axr) A ga(P,a,a;) then f(ap) = f(a;).
Given that Z = ga(P,a,ar) A ga(P,a,q;) if and only
if {ga(P,a,ar),ga(P,a,a;)} C A, then we have that
flag) = f(ay), for all a, a; s.t. a; € (I~ adom(M))
and a;, € (INIM), s.t 3(Func P) € TUS and a such that
{ga(P,a,ar),ga(P,a,a;)} C A. Let f be the minimal
such function, and let f’ be obtained from it by replac-
ing each occurrence of aj, with a;. Clearly, f’ is injec-
tive, i.e., there is no pair x, 2’ of distinct objects such that
f'(x) = f'(2'). Now, let K’ be computed from K accord-
ing to the procedure presented above. We have that K’ is
satisfiable under A — noUNA and with function f’. But
since f’ is a an injective function, then K’ is satisfiable
also under the UNA.

Proof of Theorem 4

Proof. The upper bound in combined complexity follows
from corollary 2 and from the fact that the construction of X’
is done in polynomial time in I” and IX". The lower bound
in combined complexity follows from results in (Artale et al.
2009). The data complexity follows from corollary 2. [

Proof of Lemma 10
Proof. Consider a CQ-assertion ¢[¢] = 3y.conj (¢, ¥).

= If ¢[c] is satisfiable w.r.t. KK = (T, A, S, M) then there is
an interpretation Z = (AZ,.Z) such that Z satisfies g[c].
Let € be the assignment to 7 such that conj (¢, €) is satis-
fied. We partition € to elements in I or I* | and elements
not in these sets. Consider the assignment d obtained from
€ by replacing every element not in I U I* by a fresh
constant. Let conja and conj 4 be the sets arising from
the grounding of conj as conj(cf). By Z WA M, we
conclude that conj}, € M. The interpretation 7' thaten-
hances 7 by assigning the fresh constants appearing in d
to the elements to which they are assigned by € shows that
that K' = (T, AWconj 4, S, M) is satisfiable without the
UNA.

<« Consider the assignment d that grounds conj to conjm
and conj 4 and the interpretation Z satisfying K’. By def-
inition, Z =“"A M and Z models T, S, and A U conj4.
We convert the assignment d to an assignment € that
ranges over IM, 1K and the constants that are identi-

fied by Z with the fresh constants appearing in d. Us-
ing the assignment € and Z we see that ¢[¢] is satisfiable
wrt. K = (T, A S, M).

O
Proof of Theorem 5

Proof.= Suppose that g[¢] is satisfiable w.r.t. XC and assume
by way of contradiction that the algorithm returns false.
We use the formulation of Lemma 10. Consider the as-
signment d guaranteed by the Lemma. We use d to guide
the selection of the algorithm and show a contradiction.

In the case that d is the empty assignment there are no
free variables in conj. The algorithm cannot return false
in line 3 as the query itself is satisfiable by assumption. If
the algorithm returns true in line 6, we are done. Other-
wise, the algorithm proceeds to lines 24-26. There, we en-
force the uniqueness of the pre-existing nodes I” and I
and call the satisfiability without unique name assump-
tion. By assumption ¢[¢] is satisfiable, which implies that
the KB is satisfiable. It follows that the same interpreta-
tion can be used for the satisfiability without the unique
name assumption in line 26.

Consider an M-atom at appearing in conj with a free
variable y. The assignment d into at is later found in M.
It follows that for the free variable y in at there is an a
such that at[a/y] € M as required on line 8. It follows
that returning false at line 11 is not possible.



Consider an atom at that refers to either a role r € RS
or a concept C € C® and assigned by d with at least one
value in IM. Tt follows for the free variables 7/ in at there
is an assigment & such that at[@/y] € M. This matches
the condition in line 13.

Consider another atom at that refers to either a role r €
RS or a concept C € C® and is assigned by d with con-
stants not in I™. As we assume that the algorithm returns
false, trying to match this atom by assigning it constants
that match atoms in M (line 13) does not succeed. Thus,
the algorithm attempts to replace the variables in at by
fresh constants (line 16). Notice that in the case that d
assignes both variables in the same atom by one constant
(not in IM), this is not an issue as the satisfiability with-
out unique name assumption (line 26) can unify the two
fresh constants.

Consider an atom at that refers to either a role r € R* or,
a concept C € CX with a variable y that is assigned by d
a constant in I, Tt follows that the loop in lines 18-20
tries to assign y with this value in I™. As we assume that
the algorithm returns false, if the algorithm tries to assign
to this variable other values in I this will fail. Notice
that if the same variable appears in an atom that refers
to predicates RS or C then it would already have been
replaced by lines 12-15 with a matching atom in M.

Consider an atom at that refers to either a role r € R* or,
a concept C € C* with a variable y that is assigned by d
a constant not in I, As we assume that the algorithm re-
turns false, if the algorithm tries to assign to this variable
values in I™ in lines 17-20 this will fail. Tt follows that
the variable y is replaced by a fresh constant (line 21).

When the algorithm reaches line 22 all the pure atoms
have already been made to assertions by previous stages
of the algorithm. The only atoms that may remain unas-
signed in conj are inequalities where either one or both
of the variables are unassigned. A variable y appearing
in such an inequality is assigned in d to either a value not
in M or to a value in I™. In either case, the algorithm
assigns to such variables fresh constants. Consider a vari-
able y appearing in inequalities that is assigned in d to
a value not in I™. The fresh constant replaced into this
variable can be united by the satisfiability algorithm with-
out unique name assumption to have the same interpreta-
tion as the value assigned to y by d. Consider a variable
y appearing in inequalities that is assigned in d to a value
in I, Notice that the variable 3 appears only in inequal-
ities as all variables in all pure atoms have been already
replaced. Let Y be the set of fresh constants that are as-
signed by the algorithm to variables y that are assigned by
davalue in IM. The interpretation of such fresh constants
by the satisfiability without the unique name assumption
cannot be equal to IM. However, an interpretation that
keeps these fresh constants different from all other con-
stants will satisfy the same inequalities.

Finally, the satisfiability without the unique name as-
sumption is called in line 26. Consider the fresh constants
appearing in conj 4 in line 26. Those of the fresh con-

stants were replaced into variables that are matched by d
to values in IX U I5. It follows that the algorithm is free
to unify them with the value assigned to them by d. Those
of the fresh constants that are in the set Y of variables ap-
pearing only in inequalities that are assigned in d'to values
in I are left as unique fresh individuals.

We see that the resulting assignment is satisfiable by the
same model that satisfies d as, indeed, the fresh constants
in Y are compared under d to TM elements, which are
different from all other elements. This is possible also for
the fresh elements. It follows that the algorithm returns
true leading to a contradiction.

< Suppose that Sat(KC, ¢[c]) returns true. Let d/i7 be the se-

quence of replacements done by the algorithm. Denote
conj = q[&d/i]. That is, conj is the result of replac-
ing the variables in ¢/ by the found constants d. Clearly,
we have conj[d/7] is the union of congiys conjf,l, and
conja. Thatis, conj’,, conji%, conji,,, and conjf\é/ﬂ
are all empty.

By the check in line 2, we have that x % x is not included
in conj. Furthermore, conji, € M.

The final check (line 19) is to call satzéoUNA(T,A U
conja,S, M). This corresponds to the requirement in
Lemma 10.

O

Proof of Corollary 3
Lemma 11. Sat(K, ¢[c]) is computed in LOGSPACE in M.

Proof. The algorithm can be reorganized by allocating
[log(| M| 4 1)] bits per (a) atoms in conj} ., (b) atoms in
conjj, and (c) variables in conj4-. Storing these bits re-
quires at most logarithmic space in | M.

The algorithm then enumerates for every atom (or vari-
able) all the possible assertions in M (values in M) and
tries the assignment that replaces the atom with the asser-
tion (value).

This exhausts all the options to match assertions from M
in lines 7-10 and 12-15 and values from I in lines 17-20.
Whenever all the options have been tried the variable can be
replaced with a fresh constant.

For every such replacement, the algorithm has to solve
an instance sat of satisfiability without the unique name as-
sumption. By Lemma 9 sat is then converted to a “normal”
satisfiability with the same M and S that is polynomial at
most in IX" and IB. The latter satisfiability is first-order
reducible. Thus, the entire algorithm requires logarithmic
space in M. O

Proof. The proof for the LOGSPACE data complexity fol-
lows from the above proof for lemma 11. The combined
complexity follows from the complexity of satisfiability over
DL-Lite” core-closed KBs under the A-noUNA assump-

tion. O
Proof of Theorem 6
Proof. Follows from Theorem 5. O



S.4 Proofs of Section 8
Proof of Theorem 7

Proof. This follows from the respective complexity of query
entailment and query satisfiability. O
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